首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍了已经投入使用的CVT技术,包括金属带V轮式,转盘滚轮式,链条V轮式等几种CVT类型,指出CVT技术可使汽车获得良好的动力性,并且油耗低,还可降低排放,文章还分析了CVT变速器采用液力变扭器在技术上的处理主法,并对挡位得留问题以及占汽车其它系统的控制问题进行了分析。  相似文献   

2.
CVT技术进展CVT电控技术的提高在发动机较低转速时,CVT虽然可以通过液力变矩器自动闭锁控制实现降低燃料消耗,但却无法解决噪声和发动机转速急剧变化的问题。CVT制造商采用三方面的措施:为控制响应性设定前置补偿器;为修正规范模型控制系统偏差值设定反馈补偿器;应用2自由度线性参变控制,实现20km/h车速以下的液力变矩器滑动闭锁控制。滑移控制策略技术为了克服CVT传动效率不高的问题,  相似文献   

3.
为了使机电控制无级变速器(CVT)能够可靠地传递转矩,快速地调节速比,结合某车型的结构性能参数,对机电控制CVT电控电动执行机构的设计方法进行研究。首先,对机电控制CVT电控电动执行机构的结构和工作原理进行分析,说明电控电动执行机构对CVT速比和从动带轮夹紧力的调节方法,从运动学和动力学的角度研究从金属带式无级变速器的传动机理,获得速比与主动带轮可动盘位移的关系以及保证主、从动带轮可靠传递转矩所需要的夹紧力;然后,根据整车的结构性能参数,明确汽车对机电控制CVT的功能需求和性能要求,以电控电动执行机构中直流电动机的负载转矩最小为目标,设计确定各碟形弹簧的参数和组合形式,在此基础上确定电控电动执行机构中电动机械传动系统的结构性能参数;最后,为验证所设计电控电动执行机构参数的正确性,利用所建立的机电控制CVT传动系统模型在ECE工况下对电控电动执行机构的性能进行仿真分析。结果表明:相对传统CVT液压执行机构,在ECE工况下机电控制CVT电控电动执行机构消耗的能量减少52.2%,同时设计的电控电动执行机构在ECE工况下能够实现实际夹紧力和速比对目标值的良好跟随。  相似文献   

4.
金属带式无级变速器(CVT,Continuously Variable Transmission)中的速变器(Variator)是靠摩擦传递扭矩,所以关于速变器的滑移研究实质上是十分重要的。从CVT速变器滑移率定义入手,建立速变器状态空间数学模型,详细研究滑移率与牵引系数之间的关系,提出速变器滑移控制策略,进一步采用MATLAB/Simulink/SimDriveline建立带有金属带式无级变速器整车仿真模型,通过仿真结果分析得出:在相同滑移率工况下,采用滑移控制比采用传统的夹紧力控制能够使用更小的安全系数,有效地降低了CVT液压控制系统的压力,提高了CVT自身效率,同时也提高了CVT传递扭矩的能力。  相似文献   

5.
沈帅 《汽车与配件》2009,(40):36-37
起步控制一直是困扰自动离合器的难题。湿式多片离合器结构简单,布置方便,因而控制容易、成本低,近年来在CVT上得到了广泛的应用。  相似文献   

6.
针对CVT速比控制的特殊要求,在综合考虑常规PID控制经验及控制效果的基础上,设计了分段参数自调整PID速比跟踪控制器。建立了装备CVT系统的整车动力学仿真模型,并利用Matlab/Simuink工具进行了起步、加速和坡道行驶等典型工况的仿真研究。结果表明,该控制器具有较强的鲁棒性和解耦能力,以及良好的动态响应能力和较高的稳态控制精度。  相似文献   

7.
金属带式无级变速器的速比控制是CVT的核心控制问题,速比控制系统具有明显的非线性、时滞等特点。本文采用广义预测控制方法,制定了CVT速比控制策略。最后基于dSPACE/Simulator搭建了硬件在环仿真试验台,通过试验验证了设计的控制方法的实用性并取得了理想的结果。  相似文献   

8.
CVT液压系统功率的匹配分析与仿真   总被引:2,自引:0,他引:2  
以CVT液压系统为研究对象,建立了压力、流量和功率的仿真模型,并对车辆起步、加速、制动等典型工况和ECE、EUDC循环工况进行了仿真,计算表明采用定量泵供油的CVT液压系统存在较大的功率损失,提出了提高电动液压泵和双联液压泵供油系统效率的新方案,为系统的节能控制奠定了基础。  相似文献   

9.
比例减压阀的特性及在无级变速器速比控制中的应用   总被引:1,自引:0,他引:1  
建立了CVT用比例减压阀的压力流量等特性的模型并进行了分析.针对系统固有的速比控制滞后,提出了能够补偿滞后的控制算法来对比例减压阀进行控制.仿真与试验结果表明,所设计的控制器能够满足CVT性能的要求.  相似文献   

10.
最近一两年,越来越多的自主厂商在CVT变速箱那里找到了突破口——相比AT或者AMT变速箱,CVT变速箱优点很多,技术比较先进而且成本容易控制,新的力帆620就是采用了CVT变速箱的车型。  相似文献   

11.
自动变速器(七)--无级变速器CVT(上)   总被引:1,自引:0,他引:1  
1概述驾驶灵活、低油耗和低噪声要求变速器挡位越多越好,这种思想的进一步延伸,就是无级变速。无级变速传动(ContinuouslyVariableTransmission,简称CVT)指无级控制速比变化的变速器。它能提高汽车的动力性、燃料经济性、驾驶舒适性、行驶平顺性。电控的CVT可实现动力传动系统的综合控制,充分发挥发动机特性。无级变速器的种类很多(见表1)。液力式即液力变矩器,其优良品质已在“自动变速器(一)”中阐述,它是迄今世界上占主导地位的无级变速器。a.液压式它与液力传动同属流体传动,其区别在于:它是依靠液体压能的变化来…  相似文献   

12.
采用CVT的四轮驱动混合动力车传动系统控制策略的研究   总被引:1,自引:0,他引:1  
为了改善SUV汽车的燃油经济性和动力性,提出了一种采用CVT的四轮驱动复合式混合动力汽车的结构;根据该混合动力汽车发动机试验数据,对其运行模式与模式切换离合器控制策略进行了系统分析;同时对混合动力CVT的夹紧力与速比控制进行了深入研究,并以整车燃油经济性为控制目标,提出了复合式混合动力车不同工况下的速比和夹紧力控制策略;最后通过台架试验验证了传动系统控制策略的有效性.  相似文献   

13.
全电调节带式无级变速器的理论分析与试验验证   总被引:1,自引:0,他引:1  
提出了一种应用双电机分别调节主、从动轮工作半径以实现速比变化的带式无级变速器(CVT)全电调节方案.通过运动学和受力分析,得到了CVT速比与电机转角及带轮夹紧力与电机驱动转矩间的定量关系;以橡胶V带CVT为应用对象进行了工程化设计和原理样机研制.通过对样机的性能试验验证了全电调节方案的可行性,CVT速比的精确调节得以实现,而在带轮上产生的夹紧力满足CVT传递转矩的要求.  相似文献   

14.
金属带式CVT作为一种新型变速器,通过带轮机构实现速比变换,并且在传统液压系统上应用全电子控制方式实现了高性能和低油耗,该系统在未来汽车发展中会得到广泛应用。  相似文献   

15.
CVT混合动力汽车再生制动控制策略与仿真分析   总被引:8,自引:0,他引:8  
分析了混合动力汽车制动过程中发动机反拖制动和CVT速比控制对车辆再生制动性能的影响,提出了低制动强度下仅由电机再生制动、高制动强度下电机与制动器共同制动和紧急制动时发动机参与制动的再生制动策略。对典型工况进行了再生制动仿真,仿真结果表明,CVT速比控制可使电机运行在高效区,从而获得了比传统手动变速混合动力汽车更好的制动能量回收效果。  相似文献   

16.
介绍了金属带式CVT电液控制系统硬件在环仿真原理,借助dSPACE建立了金属带式CVT电液控制系统硬件在环仿真系统平台.利用MATLAB/Simulink开发了用于ECU研制和测试的CVT模型,进行金属带式CVT电液控制系统硬件在环仿真实验,结果表明基于dSPACE系统的金属带式CVT电液控制系统硬件在环仿真的有效性.  相似文献   

17.
田永梁 《汽车杂志》2012,(7):I0005-I0005,177
全新一代的XTRONIC CVT,最大的改进是加入了ECO节油模式,通过加入了ECO MODE智能节油模块,来控制CVT的变速反应.在起步和行驶时的稳定性更好,从而降低油耗。  相似文献   

18.
冯力平 《汽车维修》2005,(12):12-16
四、电子控制系统 飞度轿车CVT自动变速器电子控制系统由动力系统控制模块、各传感器及电磁阀组成,变档采用电子控制模式,保证了自动变速器在各种条件下的驾驶舒适性。PCM接收各传感器和开关的输入信号,通过操作电磁阀,控制主动带轮控制阀和从动带轮控制阀,改变带轮的控制压力,从而改变带轮的有效直径,即改变自动变速器的传动比。  相似文献   

19.
介绍了EQ6480客车CVT(Continuously Variable Transmission)电子液压控制系统的设计,CVT传动器与发动机的动态匹配与控制算法。针对汽车运行的典型工况,在专用的传动器试验台上进行了台架试验。  相似文献   

20.
金属带式无级变速器电液控制系统的试验研究   总被引:9,自引:3,他引:9  
通过对金属带式无级变速液压控制系统功能进行分析,把该系统分为夹紧力控制和速比控制系统。设计了金属带式无级变速器电—液控制系统,对控制阀特性进行了研究,为夹紧力控制系统和速比控制系统分别设计了控制器。最后对所设计的CVT控制系统进行了实车道路试验,取得了较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号