首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
SS3机车大修在制动机试验机车有级位(即非零位)时,用副司机侧紧急制动按钮或大闸(电控制动控制器)实施紧急制动后,机车不能缓解。必须断开蓄电池闸刀,才能恢复机车充风缓解。  相似文献   

2.
针对机车重联操纵时,列车产生紧急制动,机车无卸载保护,不解除牵引力,不能自动撒砂及空气制动阀置缓解位,机车可以缓解的问题,提出对DK-1型制动机控制进行改进的方案,并介绍了改进后的作用原理和注意事项。  相似文献   

3.
HXD2C型机车设计了紧急制动隔离开关,当电路出现故障造成紧急制动无法缓解列车时,可以暂时进行隔离,以实现特殊情况下对运行区间的快速开通。通过对一起机破故障分析,介绍了机车紧急制动产生的原因,认为紧急制动隔离开关设计有局限性,提出改进措施及建议。  相似文献   

4.
随着京沪客运专线的建立,客货运输分线,提升货运能力已成为一个亟待解决的问题。使用大功率机车牵引万吨单编列车可以提高运能,但京沪线现有站台长度不能满足长大列车的停车要求,组合重载是提高运能的可能方式,多列车连挂运输使得列车的纵向冲动增加。本文以京沪线万吨组合列车(由两列5 000t的单编列车组成)为研究模型,计算分析了多种减压量制动和制动后缓解以及紧急制动车钩力分布规律。在此基础上分析了主从机车不同步时间对车钩力影响规律,并寻找到常用制动时,制动缓解时,从控机车提前于主控机车4s动作时车钩力较小;紧急制动时,从控机车提前于主控机车1s动作车钩力较合适。主从机车不同步动作对制动距离影响较小。  相似文献   

5.
杜新民  伊松年 《铁道机车车辆》2007,27(B10):72-74,96
通过对109型机车分配阀经常出现的问题总结与分析,提出了一种能合理解决109分配阀紧急制动时的增压与缓解相矛盾的方法。  相似文献   

6.
SS4改机车紧急制动控制环节存在的问题及对策   总被引:1,自引:1,他引:0  
王武军 《铁道机车车辆》2007,27(1):54-54,65
机车设计有紧急制动控制电路,在机车产生紧急制动时,会切除机车牵引动力(称卸载)。目前,国产电力机车普遍采用的卸载方式是机车紧急制动后调速手柄在级位上断开机车主断路器。这种卸载控制方式过于简单,主断路器分断后,机车失去了总电源。无法使用电阻制动或再生制动(以下统称动力制动)进行抑速。  相似文献   

7.
单机或单机重联运行时,因非正常情况下机车大量撒砂、造成轨道电路不能正常显示,从而导致行车事故发生,为此研制开发了机车紧急制动撒砂控制装置.该装置通过检测列车管压力及机车速度,自动控制机车紧急制动状态下且速度低于10km/h时停止撒砂,防止机车占用无显示现象的发生.经装车运行试验,满足现场运用的需要.  相似文献   

8.
1 故障现象 我段自1999年12月使用SS3B型机车重联牵引后在不足两个月的时间内,发生了两起按紧急制动按扭停车后,机后车辆断钩事故,而司机在缓解后未察觉车辆已断钩,仍然继续牵引列车运行,造成部份车辆分离在区间内的严重后果。 2 故障分析 当时司机看到机车缓解正常,列车管也能充风至定压(500 kPa),因而未判断出列车已断钩,故造成此事故。按常理分析,车辆断钩后列车管已拉断,机车充风缓解时由于列车管通大气,列车管肯定是充不到定压的。事后我们专门做试验,在机车紧急制动后,把机后3辆车辆的列车管人为通大气,机车列车管确实充不起风;机后10辆时,列车管可充风至480 kPa;机后15辆以上,列车管就可以充风至定压(500 kPa)。  相似文献   

9.
JZ-7单独制动阀(以下简称”单阀”)在自动保压式可操纵机车进行阶段制动和阶段缓解及大闸对机车制动后的单独缓解中具有很重要的作用,主要介绍JZ-7单独制动阀的制动与缓解及故障处理。  相似文献   

10.
介绍了DF_(8B)型机车紧急制动后施行电阻制动的电路改造方案,实施后实现了机车在紧急制动后能够施行电阻制动,提高了机车制动系统的安全性。  相似文献   

11.
使用基于气体流动理论的列车制动系统数值仿真方法定量分析了120阀的紧急阀III孔径、局减阀上的局减孔孔径、加缓风缸向列车管充气孔孔径对单编万吨列车制动、缓解特性的影响.仿真结果表明:紧急阀III孔径对列车的紧急制动特性有明显的影响。该孔径在2.3~2.7 mm范围内能够保证在常用制动时不发生紧急作用,同时紧急作用也能正常发生,并且该孔径越大,其制动波速越慢,在紧急制动时,该孔径由2.35 mm增大到2.65 mm,其制动波速由283.2 m/s降低到244.2 m/s,降低了14.2%;局减阀上局减孔孔径对常用制动时的制动波速有明显的影响,孔径越大,其常用制动的制动波速越快,在减压100 kPa时,孔径为1.5 mm时比0.5 mm时制动波速增大了77.4%;加缓风缸向列车管充气孔的大小对缓解波速有明显的影响,该孔径越大,缓解波速越快,在减压100 kPa之后缓解的过程中,随着该孔径由0.5 mm增大到1.5 mm,缓解波速增大了53.1%,小减压量制动后缓解时,该孔径大小对缓解波速影响较小。该结论为新阀的设计提供了参考。  相似文献   

12.
CRH1型动车组紧急制动安全回路分析   总被引:2,自引:0,他引:2  
为进一步提高制动系统的安全性和可靠性,CRH1型动车组上设计了以"故障导向安全"为原则的紧急制动安全回路,将影响动车组安全运行的各种不安全因素串入紧急制动安全回路,使动车组在出现紧急情况时不依赖计算机系统的前提下能安全停车,为列车提供独立于计算机之外的安全保护,其缜密的设计理念在我国自主研发高速动车组制动机过程中值得借鉴。  相似文献   

13.
根据空气流动理论和KZ1型控制阀(KZ1阀)的工作原理,建立使用KZ1阀的列车空气制动系统仿真模型,并开发相应的列车空气制动仿真系统,对KZ1阀置于快速及普通位时单车的制动、缓解和紧急制动进行仿真。与试验结果对比表明,仿真模型能够较好地模拟单车制动性能。对KZ1阀应用于时速160 km快速货车的列车制动特性进行仿真分析可知,KZ1阀在快速位时的列车制动性能与104型控制阀接近,在普通位时与120型控制阀接近;KZ1阀在制动、紧急制动时性能较好,但是在缓解时波速过低,初步分析是由于副风缸容积过大所致。因此,使用KZ1阀的车辆与使用其他型号控制阀的车辆混编时,可能会发生缓解传播不连续的问题。  相似文献   

14.
列车空气制动系统仿真的有效性   总被引:11,自引:0,他引:11  
魏伟 《中国铁道科学》2006,27(5):104-109
根据气体流动理论建立货运列车空气制动系统模型,概述管路内气体流动方程、制动系统中用到的各种边界方程和容器内气体压力的计算方法。利用基于气体流动理论开发的列车制动仿真系统,计算长、短编组列车的常用制动、缓解和紧急制动特性,并与试验结果进行对比。结果表明,计算得到的列车管、制动缸、副风缸、加缓风缸等的空气压力随时间的变化与试验结果非常接近,说明基于气体流动理论的空气制动仿真系统能够很好地模拟制动系统中气体流动和阀内动作过程。该仿真系统可以模拟最多4台机车组成的组合列车,不仅能仿真制动系统动态压力变化过程,而且其计算结果可以用于制动距离的计算,并通过数据传送实现列车纵向动力学分析程序的无缝连接。  相似文献   

15.
机车制动系统中,紧急排风阀是机车紧急制动设备的重要组成部分。现介绍装备在HXD1C电力机车法维莱制动机上紧急排风阀的结构、工作原理、理论静态分析,并且利用AMESim软件对紧急排风阀进行建模和动态仿真,从仿真结果中分析影响紧急排风阀排气速度的因素。  相似文献   

16.
介绍了城市轨道交通车辆制动控制单元中紧急阀的功能、工作原理及其在车辆运行中容易出现制动不缓解故障现象。通过台架试验,对紧急阀进行了故障分析,提出了调整紧急阀电磁线圈参数的改进措施。试验证明,电磁阀线圈参数调整后的紧急阀故可有效防止紧急制动不缓解的情况发生。  相似文献   

17.
介绍了HXD2电力机车制动控制系统中应用的带F型微动开关的紧急制动按钮性能参数,重点分析了紧急制动按钮的结构特性及工作原理,并且分析了影响紧急制动按钮工作性能的3个关键因素.应用情况表明,该紧急制动按钮性能好、故障率低、便于维修保养,但在智能控制方面还有待进一步提高.  相似文献   

18.
制动系统是城轨车辆关键系统之一,根据故障导向安全原则,制动系统失效时应有充足的措施确保列车和人员安全。北京地铁四号线车辆的制动控制系统通过G阀和RIO阀,完成列车的保持制动、常用制动、紧急制动、防滑保护等功能,并且将列车制动控制系统接入到TCMS系统中,保证了车辆的安全运营。  相似文献   

19.
介绍了CRH2型动车组制动系统组成、特点、制动功能,重点分析了动车组发生紧急制动的条件、原理,防滑控制的原理、滑行检测的方式、方法,辅助制动的控制等内容.自2007年第6次提速以来,该制动系统运行稳定、可靠.  相似文献   

20.
制动系统是快速货车的关键技术之一,制动盘是制动系统中承受机械及热负荷的主要部件。通过160km/h快速货车制动计算,确定了紧急制动过程中制动盘的边界条件,并通过ANSYS建立有限元分析模型,得到制动过程中制动盘温度及应力分布。通过分析计算,确定了在160km/h快速货车上每轴制动盘的数量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号