首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
潘勋  周小勇  陈鹰  倪林 《铁道建筑》2020,(5):98-101
为研究CRTSⅢ型无砟轨道温度场分布规律,在昌赣客运专线外进行足尺无砟轨道板温度场监测,基于统计学原理分析冬季轨道结构温度变化规律并提出适合CRTSⅢ型无砟轨道的竖向温度梯度预估模型.研究结果表明:CRTSⅢ型无砟轨道结构温度场受外界环境影响较大,其中轨道板顶面温度变化最为明显,沿深度方向各结构层温度峰值有明显的滞后现象;竖向温度梯度大于横向温度梯度,对结构温度影响起主导作用;日太阳辐射总量和最大温度梯度具有较好的相关性,据此建立了冬季日最大温度梯度经验回归公式,可为不同气候条件下的CRTSⅢ型无砟轨道的温度梯度研究提供参考.  相似文献   

2.
将桥上CRTSⅡ型板式无砟轨道结构视为多层层状体系,基于传热学基本原理,考虑模型边界条件,建立轨道结构温度场分析模型,以日照时长、日辐射总量、日平均气温和日温差为自变量,回归分析提出轨道结构竖向温度分布预估模型,研究桥上CRTSⅡ型板式无砟轨道结构的竖向温度场分布。研究结果表明:利用理论模型计算得到的轨道结构温度场分布与实测结果对比具有较好一致性;将各环境因素视为独立变量,轨道结构表面温度最值、轨道板温差随日照时长、日辐射总量、日平均气温、日温差成线性变化,轨道结构内部温度在当表面温度取最值时随深度成3次曲线线形变化;根据预估模型所得的轨道板表面温度最值、轨道板温差、轨道结构竖向温度预估值与实测值、理论值误差小于2%;利用温度场预估模型可根据气象数据快速计算得到轨道结构竖向温度分布,可为精确计算轨道结构温度效应提供参考。  相似文献   

3.
基于环境监测资料和热力学基础理论,建立CRTSⅠ型板式无砟轨道三维瞬态温度场模型,分析哈尔滨地区冬季极端低温气象条件下无砟轨道温度场分布规律和影响因素,确定东北严寒地区无砟轨道性能分析的温度参数。结果表明:无砟轨道温度场分布的影响因素包括极端气温、轨道板吸收率、风速等;无砟轨道内温度变化滞后于环境温度,轨道板板顶及板边的日温度变化幅度较大;沿轨道板板顶向下,温度场呈非线性变化,温度波动幅值不断缩小;轨道板吸收率越大,则板顶温度及温度梯度越高;风速越大,板顶温度越低,轨道板内正温度梯度越小,负温度梯度越大;建议东北极端低温条件下轨道板的温度参数取正温度梯度75℃/m,负温度梯度-25℃/m。  相似文献   

4.
为深入系统研究高速铁路桥上CRTSⅡ型纵连板式无砟轨道温度场分布规律,制作无砟轨道后张法预应力混凝土简支箱梁1/4缩尺试验模型,通过开展快速升降温试验,分析CRTSⅡ型无砟轨道二维温度场分布规律,提出轨道系统横、竖向温度三维分布形式。研究结果表明:高速铁路桥上CRTSⅡ型无砟轨道竖向温度及温差分布呈三段式阶梯形;横向温度分布呈抛物线形;CA砂浆层是影响轨道系统横、竖向温度场分布的最主要因素;轨道系统竖向负温差主要产生于轨道板;轨道板与CA砂浆层间竖向温度梯度最为显著,最高达4.5℃/cm;横向最大负温差为-4.4℃,最大正温差为5.5℃,分别产生于底座板上部和中部;轨道系统横、竖向温度三维分布呈三段式阶梯形曲面。研究结果可为高速铁路桥上CRTSⅡ型无砟轨道温度效应设计和研究提供参考。  相似文献   

5.
在我国华东地区一桥上CRTSⅡ型板式无砟轨道线路上建立温度场自动监测系统,对环境温度、轨道板温度(横向及竖向)、底座板温度(横向及竖向)等进行测试。对实测数据进行统计,分析对混凝土结构使用性能有显著影响的因素,获得环境温度与板温间的关系、无砟轨道结构竖向和横向温度场(整体温度和温度梯度)特征。基于测试分析结果讨论了现有规范中CRTSⅡ型板式无砟轨道温度荷载取值的合理性及轨道板温度荷载取值原则,为完善我国高速铁路无砟轨道技术体系提供支撑。  相似文献   

6.
为分析反射隔热涂料对无砟轨道温度场的影响,对现场铺设的CRTSⅡ型轨道板进行长期温度监测。通过试验数据分析,确定CRTSⅡ型轨道板的最大正温度梯度,利用热传导解析式可推算不同厚度轨道板的温度梯度修正系数。以CRTSⅠ型板式无砟轨道为例,建立实体有限元模型,分析反射隔热涂料对轨道板翘曲、树脂填充层受力和变形的影响。结果表明:涂刷反射隔热涂料能够在一定程度上减小太阳辐射对轨道板温度梯度和日温度变化的影响,有效控制轨道板的翘曲、树脂填充层的受力和变形,轨道板最大翘曲应力降低25%,板中最大上拱量减小56%,板角最大下沉量减少25%,树脂填充层所受最大压应力和最大压缩变形分别减少33.6%,33.3%。  相似文献   

7.
基于位于小半径曲线区段的桥上CRTSⅡ型板式无砟轨道的运营期温度与变形监测数据,分析了CRTSⅡ型板式无砟轨道的稳定性并提出了养修建议。结果表明:连续4~5 d高温天气后轨道板温度达到最高值,因此持续高温超过3 d就须加强现场检查,以消除安全隐患;CRTSⅡ型板式无砟轨道结构整体性好,钢轨与轨道板纵向相对位移很小,在轨道结构良好的情况下可适当减少防爬位移观测点数量,但对特殊结构处及结合部仍应长期观测;在设计温度梯度范围内,轨道板垂向稳定性满足要求。  相似文献   

8.
研究目的:为得到设有超高的无砟轨道温度场分布的时变规律,建立无砟轨道横竖向温度梯度荷载模式,在某客运专线圆曲线段上CRTSⅡ型纵连板式无砟轨道中埋设温度传感器对其温度场进行了长期连续观测。研究结论:(1)无砟轨道昼夜温度变化较大,表面最高日温差可达24.7℃,平均日温差达19.0℃;(2)随着距表面深度的增加,无砟轨道温度变化幅值逐渐减小,峰值出现时间不断滞后;(3)底座板底面最大日温差为6.1℃,平均为5.0℃;(4)纵连板式无砟轨道的竖向温度梯度可拟合为指数曲线,与铁路桥梁设计规范规定的箱梁竖向温度梯度分布在形状上较为符合;(5)纵连板式无砟轨道横向温度梯度分为轨道板和底座板两类,轨道板横向温度梯度可采用二次函数拟合回归,底座板横向梯度可采用线性分段函数拟合;(6)研究成果可为我国中部地区高速铁路设计温度荷载模式提供指导作用。  相似文献   

9.
无砟轨道早期病害是影响其长期服役寿命的重要因素。应用 CRTSⅡ型板式轨道有限元计算模型,对轨道板铺设过程中的受力特性进行了分析。计算结果表明,在轨道板起吊和精调过程中,其板面最大拉应力可能发生超过或接近混凝土抗拉强度的情况,将会引起横向裂纹;轨道板灌注 CA 砂浆层后,纵连前板角区域温度翘曲应力超过 CA 砂浆层抗压强度,容易出现离缝;轨道板纵连后温度翘曲应力则大为降低。加强起吊过程控制、调整精调千斤顶位置与及时进行轨道板纵连是控制CRTSⅡ型板式轨道早期病害的重要手段。  相似文献   

10.
CRTSⅡ型板式无砟轨道结构由于其纵连的特点,对温度荷载比较敏感。温度荷载的长期作用会导致结构疲劳伤损,严重时影响其承载力及行车安全。对高温天气条件下华东地区某客运专线路基段CRTSⅡ型板式无砟轨道内部温度特性进行了现场试验与分析。结果表明:轨道板、砂浆层、支承层的温度与环境温度变化趋势基本一致,各层温度极值出现时刻随深度的增加存在滞后现象;当夏季气温处于30~34℃时,轨道板内正温度超过设计规范限值——90℃/m,因此养护维修过程中,即使环境温度不高于35℃也应重视轨道内部的温度梯度情况。  相似文献   

11.
为研究无砟轨道温度场分布规律,基于气象学和传热学原理,建立CRTSⅢ型无砟轨道温度场瞬态分析模型。以实测轨道内部的温度数据验证模型有效性,在此基础上研究轨道结构温度场分布规律,并探讨风速和太阳辐射强度对轨道板内部温度变化的影响。结果表明:轨道结构温度沿竖向呈非线性分布,且随着深度的增加,温度变化幅度逐渐减小;横向温度分布随昼夜交替呈现周期性变化,在0.4~2.1 m存在温度平稳区。太阳辐射强度和轨道表面温度以日为单位呈周期性变化,轨道表面最大温度较太阳辐射峰值滞后约1 h。风速对无砟轨道表面以下10 cm范围的温度梯度影响较大,超过此范围的影响较小可忽略不计。有限元分析结果与实测数据基本吻合,研究结论可为CRTSⅢ无砟轨道温度场特性研究提供依据。  相似文献   

12.
为掌握CRTSⅢ型板式无砟轨道结构的温度场、受力和变形规律,在郑徐高铁跨京杭大运河徐州特大桥的CRTSⅢ型板式无砟轨道结构开展监测服役状态监测的基础上,对监测数据进行了统计分析,研究表明:(1)轨道板板中温度高于自密实混凝土层和底座板;(2)轨道板上半部分温度梯度较大,下半部分温度梯度较小;(3)连续梁跨中地段轨道板板端翘曲位移高于板中翘曲位移,板端最高翘曲位移为1.9mm。连续梁梁端地段轨道板板端翘曲位移与板中翘曲位移接近;(4)随着大气温度的升高,桥梁梁缝的相对位移值逐渐减小;(5)轨道板压应力、拉应力大小变化随着温度的升高和降低而相应发生变化。  相似文献   

13.
为研究高温季节高速铁路桥上CRTSⅡ型板式无砟轨道的温度分布规律,制作CRTSⅡ型板式无砟轨道-预应力混凝土简支箱梁1:4缩尺试验模型.通过开展夏季典型高温天气的温度试验,分析高速铁路桥上CRTSⅡ型板式无砟轨道结构的温度分布变化规律,研究无砟轨道横、竖向温度分布型式.结果表明:在非阳光直射条件下,高速铁路桥上C RT...  相似文献   

14.
层间界面性能良好是CRTS Ⅱ型板式无砟轨道结构保持稳定的关键,工程中一般通过水平推板试验测得CRTS Ⅱ型板式无砟轨道结构的切向内聚力参数,以衡量层间界面性能.开展CRTS Ⅱ型板式无砟轨道结构的水平推板缩尺、实尺试验,得到层间界面切向力-位移关系曲线,进而得到内聚力模型参数.建立CRTS Ⅱ型板式无砟轨道结构三维渐...  相似文献   

15.
CRTSⅡ型板式无砟轨道结构是由钢筋混凝土组成的多层叠加连续结构,轨道结构温度变化受气温影响较大。在合肥地区小半径曲线地段的CRTSⅡ型板式无砟轨道结构长期实时监测的基础上,对温度数据进行了统计分析,研究表明:(1)CRTSⅡ型板式无砟轨道结构中钢轨、轨道板和底座板温度的变化趋势与气温的变化趋势相同,且呈现以日为周期的不等幅值的周期性变化;(2)轨温最大值比气温高19℃左右,轨温最小值与气温近似。这与《铁路无缝线路设计规范》(TB 10015-2012)中结论接近;(3)自上到下各层轨道结构的温度变化存在相位滞后现象;(4)根据无砟轨道结构温度变化的特点,采用正弦函数拟合出高温天气下钢轨、轨道板、底座板的温度时程方程和曲线,拟合精度较高,结果较为可靠。  相似文献   

16.
研究目的:CRTSⅡ型板式无砟轨道施工过程中,轨道板窄缝浇筑后纵连前,轨道板处于一种偏心受压状态,在温度荷载作用下轨道板容易产生上拱变形现象。本文利用ANSYS软件,建立温度荷载作用下CRTSⅡ型轨道板上拱变形有限元力学分析模型。通过对轨道板上拱变形过程模拟,分析其上拱变形的基本规律,以及砂浆层粘结强度、板边离缝深度和轨道板温度梯度对轨道板竖向上拱临界温升幅度的影响。研究结论:(1)轨道板上拱变形从板端约第一扣件处逐渐向板中蔓延,当达到某一临界温升幅度ΔT时,将导致轨道板与砂浆层的粘结失效而分离;(2)轨道板上拱临界温升幅度随着粘接强度增大而增大,增大轨道板与砂浆层的粘结强度,不仅可以抑制和延缓轨道板上拱的发生,同时可减小板边上拱程度;(3)施工过程中,采取措施减少轨道板与砂浆层的离缝面积,有利于提高轨道板上拱的临界温升幅度;(4)温度梯度的作用会加速轨道板上拱变形;(5)不同温度状态下的轨道板上拱变形现象,可反映出轨道板与砂浆层之间的不同粘结状态;(6)该研究成果对于完善CRTSⅡ型板式轨道的施工技术具有指导意义。  相似文献   

17.
CRTSⅡ型板式轨道假缝开裂对轨道受力的影响分析   总被引:1,自引:1,他引:0  
为分析CRTSⅡ型板式无砟轨道假缝开裂对轨道受力性能的影响,以桥上Ⅱ型板式无砟轨道为例建立模型,应用有限元法,计算分析不同数量和不同深度的假缝裂缝在不同荷载作用下对Ⅱ型板式轨道受力性能的影响。结果表明,对比列车荷载和温度梯度的影响,正温度梯度作用下,假缝开裂对轨道结构的受力影响最大,裂缝深度小于200 mm时,裂缝处混凝土会发生局部受压破坏;裂缝深度达到200 mm时,开裂会导致底座板和砂浆层的连带破坏;随着开裂数量的增加,砂浆层和底座板的应力峰值减小。不同荷载作用下,假缝开裂都会导致裂缝处纵连钢筋应力的突变,但不会导致纵连钢筋的屈服破坏。  相似文献   

18.
印度尼西亚雅加达至万隆高速铁路采用了CRTS Ⅲ型板式无砟轨道结构,而CRTS Ⅲ型板式无砟轨道由我国自主研发,已广泛应用于我国高速铁路。结合我国高速铁路相关研究成果,通过分析雅万高铁沿线气候环境特点和无砟轨道结构设计荷载差异,深入研究雅万高铁CRTS Ⅲ型板式无砟轨道结构优化方案。研究结果表明:雅万高铁可采用普通钢筋混凝土轨道板;轨道板最大温度梯度宜取0.65℃/cm,底座整体温差宜取15℃;优化后轨道板和自密实混凝土层配筋率可降低约10%;路基地段底座分段长度宜取4~6块轨道板。  相似文献   

19.
为研究严寒地区夏季、冬季极端天气条件下,CRTSⅠ型板式无砟轨道温度场分布问题,应用Abaqus有限元软件,基于气象数据和热传导理论,建立CRTSⅠ型板式无砟轨道三维瞬态温度场计算模型,分析板式无砟轨道横、竖向温度场分布情况.得到以下结论:(1)CRTSⅠ型板式无砟轨道瞬时温度场呈对称分布,轨道板内部温度场变化情况滞后...  相似文献   

20.
针对目前我国高速铁路中普遍采用的32 m简支箱梁与CRTS II型无砟轨道结构,基于传热学基本理论,考虑太阳辐射与对流换热,采用ANSYS有限元软件建立箱梁-无砟轨道温度场仿真分析模型,分析整个结构在典型时刻的温度分布特征,并研究无砟轨道板、箱梁顶板、腹板和底板等典型位置处的温度随时间变化规律。基于温差最大时刻的结构温度分布,根据温度场数值仿真模型计算结果,拟合得到无砟轨道结构和无遮盖部分箱梁的竖向温度梯度分布模式,可为我国典型地区CRTS II型无砟轨道的温度应力计算提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号