首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A simple exercise in data analysis showed that, in queued traffic, a well-defined relation exists between the flow on a homogeneous freeway segment and the segment’s vehicle accumulation. The exercise consisted of constructing cumulative vehicle arrival curves to measure the flows and densities on multiple segments of a queued freeway. At this particular site, each interchange enveloped by the queue exhibited a higher on-ramp flow than off-ramp flow and as a consequence, motorists encountered a steady improvement in traffic conditions (e.g., reduced densities and increased speeds) as they traveled from the tail of the queue to the bottleneck. This finding has practical implications for freeway traffic planning and management. Perhaps most notably, it suggests that the first-order hydrodynamic theory of traffic is adequate for describing some of the more relevant features of queue evolution. This and other practical issues are discussed in some detail.  相似文献   

2.
Details of traffic evolution were studied upstream and downstream of a freeway bottleneck located near a busy on-ramp. It is shown that on certain days the bottleneck became active upon dissipation of a queue emanating from somewhere further downstream. On such occasions, the bottleneck occurred at a fixed location, approximately one kilometer downstream of the merge. Notably, even after the dissipation of a downstream queue, the discharge flows in the active bottleneck were nearly constant, since the cumulative counts never deviated much from a linear trend. The average bottleneck discharge flows were also reproducible from day to day. The diagnostic tools used in this study were curves of cumulative vehicle arrival number versus time and cumulative occupancy versus time constructed from data measured at neighboring freeway loop detectors. Once suitably transformed, these cumulative curves provided the measurement resolution necessary to observe the transitions between freely flowing and queued conditions and to identify some important traffic features.  相似文献   

3.
This work investigates the effect of heavy commercial vehicles on the capacity and overall performance of congested freeway sections. Furthermore, the following behaviors of heavy commercial vehicles and its comparison with passenger cars are presented. Freeways are designed to facilitate the flow of traffic including passenger cars and trucks. The impact of these different vehicle types is not uniform, creating problems in freeway operations and safety particularly under heavy demand with a high proportion of heavy vehicles. There have been very few studies concerned with the traffic behavior and characteristics of heavy vehicles in these situations. This study draws on extensive data collected over a long stretch of freeway using videotaping and surveys at several sites. The collected data were firstly used to study the interaction between heavy vehicles and passenger cars. Through a detailed trajectory analysis, the following behaviors of 120 heavy vehicles were then analyzed to provide a thorough understanding of heavy vehicles‐following behavior mechanism. The results showed a significant difference in the following behavior of heavy vehicles compared with other vehicles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Loop detectors are the preeminent vehicle detector for freeway traffic surveillance. Although single loops have been used for decades, debate continues on how to interpret the measurements. Many researchers have sought better estimates of velocity from single loops. The preceding work has emphasized techniques that use many samples of aggregate flow and occupancy to reduce the estimation error. Although rarely noted, these techniques effectively seek to reduce the bias due to long vehicles in measured occupancy. This paper presents a different approach, using a new aggregation methodology to estimate velocity and reduce the impact of long vehicles in the original traffic measurements. In contrast to conventional practice, the new estimate significantly reduces velocity estimation errors when it is not possible to control for a wide range of vehicle lengths.  相似文献   

5.
Vehicle discharge headway at signalized intersections is of great importance in junction analysis. However, it is very difficult to simulate the discharge headway of individual queued vehicle because of the great variations in the driver behaviors, vehicle characteristics and traffic environment. The current study proposes a neural network (NN) approach to simulate the queued vehicle discharge headway. A computer-based three-layered (NN) model was developed for the estimation of discharge headway. The widely used backpropagation algorithm has been utilized in training the NN model. The NN model was trained, validated with field data and then compared with other headway models. It was found that the NN model performed better. Model sensitivity analysis was conducted to further validate the applicability of the model. Results showed that the NN model could produce reasonable discharge headway estimates for individual vehicles.  相似文献   

6.
7.
The paper presents an algorithm for matching individual vehicles measured at a freeway detector with the vehicles’ corresponding measurements taken earlier at another detector located upstream. Although this algorithm is potentially compatible with many vehicle detector technologies, the paper illustrates the method using existing dual-loop detectors to measure vehicle lengths. This detector technology has seen widespread deployment for velocity measurement. Since the detectors were not developed to measure vehicle length, these measurements can include significant errors. To overcome this problem, the algorithm exploits drivers’ tendencies to retain their positions within dense platoons. The otherwise complicated task of vehicle reidentification is carried out by matching these platoons rather than individual vehicles. Of course once a vehicle has been matched across neighboring detector stations, the difference in its arrival time at each station defines the vehicle’s travel time on the intervening segment.Findings from an application of the algorithm over a 1/3 mile long segment are presented herein and they indicate that a sufficient number of vehicles can be matched for the purpose of traffic surveillance. As such, the algorithm extracts travel time data without requiring the deployment of new detector technologies. In addition to the immediate impacts on traffic monitoring, the work provides a means to quantify the potential benefits of emerging detector technologies that promise to extract more detailed information from individual vehicles.  相似文献   

8.
This paper considers the problem of freeway incident detection within the general framework of computer‐based freeway surveillance and control. A new approach to the detection of freeway traffic incidents is presented based on a discrete‐time stochastic model of the form ARIMA (0, 1, 3) that describes the dynamics of traffic occupancy observations. This approach utilizes real‐time estimates of the variability in traffic occupancies as detection thresholds, thus eliminating the need for threshold calibration and lessening the problem of false‐alarms. Because the moving average parameters of the ARIMA (0, 1, 3) model change over time, these parameters can be updated occasionally. The performance of the developed detection algorithm has been evaluated in terms of detection rate, false‐alarm rate, and average time‐lag to detection, using a total of 1692 minutes of occupancy observations recorded during 50 representative traffic incidents.  相似文献   

9.
Traffic flow theory has come to a point where conventional, fixed time averaged data are limiting our insight into critical behavior both at the macroscopic and microscopic scales. This paper develops a methodology to measure relationships of density and vehicle spacing on freeways. These relationships are central to most traffic flow theories but have historically been difficult to measure empirically. The work leads to macroscopic flow-density and microscopic speed-spacing relationships in the congested regime derived entirely from dual loop detector data and then verified against the NGSIM data set. The methodology eliminates the need to seek out stationary conditions and yields clean relationships that do not depend on prior assumptions of the curve shape before fitting the data. Upon review of the clean empirical relationships a key finding of this work is the fact that many of the critical parameters of the macroscopic flow-density and microscopic speed-spacing relationships depend on vehicle length, e.g., upstream moving waves should travel through long vehicles faster than through short vehicles. Thus, the commonly used assumption of a homogeneous vehicle fleet likely obscures these important phenomena. More broadly, if waves travel faster or slower depending on the length of the vehicles through which the waves pass, then the way traffic is modeled should be updated to explicitly account for inhomogeneous vehicle lengths.  相似文献   

10.
Conventional vehicle detectors are capable of monitoring discrete points along the freeway but do not provide information about conditions on the link between detectors. Knowledge of conditions on the link is useful to operating agencies for enabling timely decisions in response to various delay causing events and hence to reduce the resulting congestion of the freeway system. This paper presents an approach that matches vehicle measurements between detector stations to provide information on the conditions over the link between the detectors rather than relying strictly on the aggregate point measurements from the detectors. In particular this work reidentifies measurements from distinct vehicles using the existing loop detector infrastructure. Here the distinct vehicles are the long vehicles, but depending on the vehicle population or type of detector used, one might chose to use some other reproducible feature.This new methodology represents an important advancement over preceding loop based vehicle reidentification, as illustrated herein, it enables vehicle reidentification across a major diverge and a major merge. The examples include a case where the reidentification algorithm responded to delay between two detector stations an hour before the delay was locally observable at either of the stations used for reidentification. While previous loop based reidentification work was limited to dual loop detectors, the present effort also extends the methodology to single loop detectors; thereby making it more widely applicable. Although the research uses loop detector data, the algorithm would be equally applicable to data obtained from many other traffic detectors that provide reproducible vehicle features.  相似文献   

11.
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

12.
This study develops a car‐following model in which heavy vehicle behaviour is predicted separately from passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger cars. These differences could create problems in freeway operations and safety under congested traffic conditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increasing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades because existing car‐following models do not differentiate between these vehicles and passenger cars. This study highlighted some of the differences in car‐following behaviour of heavy vehicle and passenger drivers and developed a model considering heavy vehicles. In this model, the local linear model tree approach was used to incorporate human perceptual imperfections into a car‐following model. Three different real world data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training and testing of the model, and one of them was used for evaluation purpose. The performance of the model was compared with a number of existing car‐following models. The results showed that the model, which considers the heavy vehicle type, could predict car‐following behaviour of drivers better than the existing models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Research on using high-resolution event-based data for traffic modeling and control is still at early stage. In this paper, we provide a comprehensive overview on what has been achieved and also think ahead on what can be achieved in the future. It is our opinion that using high-resolution event data, instead of conventional aggregate data, could bring significant improvements to current research and practices in traffic engineering. Event data records the times when a vehicle arrives at and departs from a vehicle detector. From that, individual vehicle’s on-detector-time and time gap between two consecutive vehicles can be derived. Such detailed information is of great importance for traffic modeling and control. As reviewed in this paper, current research has demonstrated that event data are extremely helpful in the fields of detector error diagnosis, vehicle classification, freeway travel time estimation, arterial performance measure, signal control optimization, traffic safety, traffic flow theory, and environmental studies. In addition, the cost of event data collection is low compared to other data collection techniques since event data can be directly collected from existing controller cabinet without any changes on the infrastructure, and can be continuously collected in 24/7 mode. This brings many research opportunities as suggested in the paper.  相似文献   

14.
The level of service (LOS) concept in the Highway Capacity Manual has been used as a qualitative measure representing freeway operational conditions for over 35 years. One key element that has not been adequately addressed is how road users perceive LOS. This exploratory research examines road-user perceptions of freeway LOS by presenting study participants with a series of video clips of various traffic conditions (taken from cameras on overpasses to allow a complete view of the traffic stream) and asking them their perceptions of LOS. A random effects ordered probability model is then used to statistically link participant-recorded perceptions of LOS with measurable traffic conditions (speed, density, flow, percentage of trucks, vehicle headways) and participant characteristics. The findings suggest that the Highway Capacity Manual’s use of traffic density as a single performance measure for LOS does not accurately reflect road-user perceptions. The statistical analysis shows that a number of attributes besides traffic density determine public perceptions of LOS and that these perceptions vary depending on both traffic conditions and road-user characteristics.  相似文献   

15.
This work focuses on developing a variety of strategies for alleviating congestion at freeway merging points as well as improving the safety of these points. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristic of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year extensive study has been undertaken to investigate traffic behavior and characteristics during the merging process under congested situations in order to design safer and less congested merging points as well as to apply more efficient control at these bottleneck sections. Two groups of strategies were investigated in this study. The First group was related to the traffic characteristics, and the second group to the geometric characteristics. In the first group, the control strategies related to closure of freeway and ramp lanes as well as lane‐changing maneuver restriction were investigated through a simulation program, detector data, and field experiment. In the second group, the angle of convergence of the ramp with the freeway in relation to merging capacity was analyzed using a simulation program. Results suggested the potential benefits of using proposed strategies developed in this work and can serve as initial guidance for the reduction of delay and improvement of safety under congested traffic conditions.  相似文献   

16.
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.  相似文献   

17.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

18.
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System.  相似文献   

19.
One source of vehicle conflict is the freeway weaving section, where a merge and diverge in close proximity require vehicles either entering or exiting the freeway to execute one or more lane changes. Using accident data for a portion of Southern California, we examined accidents that occurred on three types of weaving sections defined in traffic engineering: Type A, where every merging or diverging vehicle must execute one lane change, Type B, where either merging or diverging can be done without changing lanes, and Type C, where one maneuver requires at least two lane changes. We found no difference among these three types in terms of overall accident rates for 55 weaving sections over one year (1998). However, there were significant differences in terms of the types of accidents that occur within these types in terms of severity, and location of the primary collision, the factors causing the accident, and the time period in which the accident is most likely to occur. These differences in aspects of safety lead to implications for traffic engineering improvements.  相似文献   

20.
The use of advanced technologies and intelligence in vehicles and infrastructure could make the current highway transportation system much more efficient. Semi-automated vehicles with the capability of automatically following a vehicle in front as long as it is in the same lane and in the vicinity of the forward looking ranging sensor are expected to be deployed in the near future. Their penetration into the current manual traffic will give rise to mixed manual/semi-automated traffic. In this paper, we analyze the fundamental flow–density curve for mixed traffic using flow–density curves for 100% manual and 100% semi-automated traffic. Assuming that semi-automated vehicles use a time headway smaller than today’s manual traffic average due to the use of sensors and actuators, we have shown using the flow–density diagram that the traffic flow rate will increase in mixed traffic. We have also shown that the flow–density curve for mixed traffic is restricted between the flow–density curves for 100% manual and 100% semi-automated traffic. We have presented in a graphical way that the presence of semi-automated vehicles in mixed traffic propagates a shock wave faster than in manual traffic. We have demonstrated that the presence of semi-automated vehicles does not change the total travel time of vehicles in mixed traffic. Though we observed that with 50% semi-automated vehicles a vehicle travels 10.6% more distance than a vehicle in manual traffic for the same time horizon and starting at approximately the same position, this increase is marginal and is within the modeling error. Lastly, we have shown that when shock waves on the highway produce stop-and-go traffic, the average delay experienced by vehicles at standstill is lower in mixed traffic than in manual traffic, while the average number of vehicles at standstill remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号