首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters.  相似文献   

2.
Priority for public transit includes a large variety of measures, including improvements to infrastructure and vehicles. For vehicles, the low floor concept is of particular importance. The central points of priority measures, however, are improvements of traffic control by traffic signals. Here, an improved sensitivity regarding public transit vehicles is the key to a remarkable reduction of factors causing delay. Different techniques for a traffic actuated signal control and different strategies regarding the degree of priority are applied. Thus, especially the reliability of public transit operations is increased. The priority efforts must be embedded in an integrated plan covering the whole urban or metropolitan transportation system.  相似文献   

3.
It has been demonstrated that while the TRANSYT traffic model simulates transit vehicles in mixed traffic operation, it does not adequately consider the effects of bus or streetcar stops on the travelled roadway near signalized intersections. Its assumption that the transit vehicles do not hold up other vehicles while they are loading and unloading passengers is also invalid when midblock stops occur in the travelled lanes. To account for the effects of transit stops, an alternative type of network formulation which uses dummy nodes and dummy links with appropriate link costs is proposed for modelling the effects of transit stops. It approximates transit stop dwells by discrete distributions, requiring 1 dummy node and 4 dummy links for each nonzero value used in the approximating distribution. Realism for such operation can be improved significantly, usually with the use of only 1 or 2 dummy nodes per transit stop. Parameters for the dummy links have been tested over a wide range, and a set of operational values is recommended. Flow profiles illustrating the need for and the effects of the recommended formulation are presented in the paper.  相似文献   

4.
The main purpose of this study is to design a transit network of routes for handling actual-size road networks. This transit-network design problem is known to be complex and cumbersome. Thus, a heuristic methodology is proposed, taking into account the major concerns of transit authorities such as budget constraints, level-of-service standards and the attractiveness of the transit routes. In addition, this approach considers other important aspects of the problem including categorization of stops, multiclass of transit vehicles, hierarchy planning, system capacity (which has been largely ignored in past studies) and the integration between route-design and frequency-setting analyses. The process developed starts with the construction of a set of potential stops using a clustering concept. Then, by the use of Newton gravity theory and a special shortest-path procedure, a set of candidate routes is formed, categorized by hierarchy (mass, feeder, local routes). In the last step of the process a metaheuristic search engine is launched over the candidate routes, incorporating budgetary constraints, until a good solution is found. The algorithm was tested on the actual-size transit network of the city of Winnipeg; the results show that under the same conditions (budget and constraints) the proposed set of routes resulted in a reduction of 14% of total travel time compared to the existing transit network. In addition the methodology developed is compared favorably with other studies using the transit network of Mandl benchmark. The generality of the methodology was tested on the recent real dataset (pertaining to the year 2010) of the larger city of Chicago, in which a more efficient and optimized scheme was proposed for the existing rail system.  相似文献   

5.
The 1990 Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have defined a set of transportation control measures to counter the increase in the vehicle emissions and energy consumption due to increased travel. The value of these TCM strategies is unknown as there is limited data available to measure the travel effects of individual TCM strategies and the models are inadequate in forecasting changes in travel behavior resulting from these strategies. The work described in this paper begins to provide an operational methodology to overcome these difficulties so that the impacts of the policy mandates of both CAAA and ISTEA can be assessed. Although the framework, as currently developed, falls well short of actually forecasting changes in traveler behavior relative to policy options designed to encourage emissions reduction, the approach can be useful in estimating upper bounds of certain policy alternatives in reducing vehicle emissions. Subject to this important limitation, the potential of transportation policy options to alleviate vehicle emissions is examined in a comprehensive activity-based approach. Conclusions are drawn relative to the potential emissions savings that can be expected from efficient trip chaining behavior, ridesharing among household members, as well as from technological advances in vehicle emissions control devices represented by replacing all of the vehicles in the fleet by vehicles conforming to present-day emissions technology.  相似文献   

6.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

7.
8.
Systems that enable high levels of vehicle-automation are now beginning to enter the commercial marketplace. Road vehicles capable of operating independently of real-time human control under an increasing set of circumstances will likely become more widely available in the near future. Such vehicles are expected to bring a variety of benefits. Two such anticipated advantages (relative to human-driver vehicle control) are said to be increased road network capacity and the freeing up of the driver-occupant’s time to engage in their choice of leisurely or economically-productive (non-driving) tasks.In this study we investigate the implications for intersection capacity and level-of-service of providing occupants of automated (without real-time human control), autonomously-operating (without vehicle-to-X communication) cars with ride quality that is equivalent (in terms of maximum rates of longitudinal and lateral acceleration) to two types of rail systems: [urban] light rail transit and [inter-urban] high-speed rail. The literature suggests that car passengers start experiencing discomfort at lower rates of acceleration than car drivers; it is therefore plausible that occupants of an autonomously-operating vehicle may wish to instruct their vehicle to maneuver in a way that provides them greater ride comfort than if the vehicle-control algorithm simply mimicked human-driving-operation.On the basis of traffic microsimulation analysis, we found that restricting the dynamics of autonomous cars to the acceleration/deceleration characteristics of both rail systems leads to reductions in a signalized intersection’s vehicle-processing capacity and increases in delay. The impacts were found to be larger when constraining the autonomous cars’ dynamics to the more-restrictive acceleration/deceleration profile of high-speed rail. The scenarios we analyzed must be viewed as boundary conditions, because autonomous cars’ dynamics were by definition never allowed to exceed the acceleration/deceleration constraints of the rail systems. Appropriate evidence regarding motorists’ preferences does not exist at present; establishing these preferences is an important item for the future research agenda.This paper concludes with a brief discussion of research needs to advance this line of inquiry.  相似文献   

9.
This study investigates the asymmetric effects of gasoline prices on public transportation use in Taiwan. The empirical results obtained are as follows. First, we verify that gasoline price is an important determinant of transit demand. Gasoline prices have significantly positive effects on bus and mass rapid transit (MRT) use. Second, MRT ridership is more sensitive than bus and railway ridership to gasoline price and income. In the face of oil prices escalation and economic growth, the MRT system should have higher priority in public transportation planning. Third, the effects of gasoline prices on bus and MRT use are asymmetric. Bus and MRT use increases faster when gasoline prices rise than it decreases when gasoline prices fall. The transit agencies should adjust operating strategies faster in the rising of oil prices than in the falling of oil prices. It is important for transit planning to use oil prices as signals and increase the flexibility of operation in dealing with the changes in ridership. Some strategies, such as enhancing the availability of transfer information and updating transit information timely, are helpful to move passengers efficiently.  相似文献   

10.
This paper reports on a recent attempt to provide private transit in the form of jitney service in downtown Los Angeles. It describes the process undertaken to initiate jitney service and the resultant organization's structure and operation. A survey of jitney passengers provided information on the users and their tripmaking characteristics. A group of loyal jitney riders emerged who patronized the service because of its lower travel times and more personalized atmosphere. This group formed the core of frequent users. The Los Angeles experience is analyzed in terms of the economic feasibility of jitney service and the impact on the financial status of public transit. The public transit agency experienced a slight negative financial impact as a result of the jitney service. Ridership during peak hours declined somewhat but the jitney service was not frequent enough to carry sufficient passengers to allow the transit agency to cut costly peak hour service. This analysis shows that the jitney service ultimately was not an economically successful operation. The factors which would have increased the likelihood of success were increased frequency of service and higher fares, which would have been sustainable if not for unexpected developments in public transit financing. A labor pool willing to work for low wages, high transit use in the central city, relatively high transit fares and the availability of inexpensive vehicles appear to be prerequisites to a successful urban jitney operation.  相似文献   

11.
Abstract

Microscopic traffic simulators are the most advanced tools for representing the movement of vehicles on a transport network. However, the energy spent in traffic microsimulation has been mainly oriented to cars. Little interest has been devoted to more sophisticated models for simulating transit systems. Commercial software has some options to incorporate the operation of transit vehicles, but they are insufficient to properly consider a real public transport system. This paper develops an Application Programming Interface, called MIcroscopic Simulation of TRANSIT (MISTRANSIT), using the commercial microsimulator PARAllel MICroscopic Simulation. MISTRANSIT makes advances in three ways: public transport vehicles can have new characteristics; passengers are incorporated and traced as individual objects; and specific models represent the interaction between passengers and vehicles at stops. This paper presents the modelling approach as well as various experiments to illustrate the feasibility of MISTRANSIT for studying policy operations of transit systems.  相似文献   

12.
The level of service of a bus line is evaluated by its operational characteristics, particularly by the ratio between average bus travel time on a given route and the average passenger car travel time on the shortest distance between the origin and the destination of the bus in question. It is shown that the level-of-service measure may be predicted by such independent variables as route length, average distance between bus stations, number of signalized and unsignalized intersections, and the ratio between such intersections. It is hypothesized that use of other independent variables such as boarding and alighting passengers, or volume to capacity ratio on the route concerned, could improve the predictive power of the suggested models. Further research is recommended on the effect of these latter variables and other operational variables which might influence bus level of service, and also on the comparison between direct bus lines and lines which use transfer points.  相似文献   

13.
This paper presents a real-time signal control system that optimizes signal settings based on minimization of person delay on arterials. The system’s underlying mixed integer linear program minimizes person delay by explicitly accounting for the passenger occupancy of autos and transit vehicles. This way it can provide signal priority to transit vehicles in an efficient way even when they travel in conflicting directions. Furthermore, it recognizes the importance of schedule adherence for reliable transit operations and accounts for it by assigning an additional weighting factor on transit delays. This introduces another criterion for resolving the issue of assigning priority to conflicting transit routes. At the same time, the system maintains auto vehicle progression by introducing the appropriate delays associated with interruptions of platoons. In addition to the fact that it utilizes readily available technologies to obtain the inputs for the optimization, the system’s feasibility in real-world settings is enhanced by its low computation time. The proposed signal control system is tested on a four-intersection segment of San Pablo Avenue arterial located in Berkeley, California. The findings show the system’s capability to outperform pretimed (i.e., fixed-time) optimal signal settings by reducing total person delay. They have also demonstrated its success in reducing bus person delay by efficiently providing priority to transit vehicles even when they travel in conflicting directions.  相似文献   

14.
Transit vehicles stopping to load/unload passengers on-line at a signalized intersection can obstruct the flow of other vehicles. The TRANSYT model ignores the delay to other traffic caused by this loading/unloading process. This can cause TRANSYT to use incorrect flow profiles, resulting in signal timings that cater to these profiles rather than the actual ones. This paper describes a new model for representing near-side transit stops in lanes shared by public transit and private vehicles, and its implementation into the TRANSYT-7F program. The results of an initial application of the proposed model are also described. The proposed model, which is a deterministic simulation model, is able to represent the effect of near-side transit stops on the other traffic; this representation covers both total and partial blockage of the approaches during the transit loading. The procedure has been incorporated into the TRANSYT-7F program. This allows appropriate representation of the adverse effects of transit loading on-line during a green phase. It thus encourages the TRANSYT optimizer to push transit loading to the red phases.  相似文献   

15.
Despite the recent commercial success of hybrid, plug-in hybrid and electric vehicles their market share is still insufficient to produce either a significant impact on energy consumption on a global basis or a profitable automotive segment. In this context, the possibility of upgrading conventional vehicles to hybrid electric vehicles is gaining increasing interest.To this aim this paper investigated and modelled the intention to install an after-market hybridization solar-kit (HySolarKit) in order to ascertain the main behavioural determinants of the choice process and set up an operational model with which to estimate the market potential of such technology. In particular, two behavioural stages of the choice process were analysed and modelled: (i) the intention to adopt the HySolarKit; (ii) the choice to install the HySolarKit. Both issues were addressed through ad hoc stated preference surveys carried out in two different Italian cities, and through the specification and the calibration of discrete choice models based on the behavioural paradigm of random utility theory. Different modelling solutions (homoscedastic and heteroscedastic) were compared in terms of goodness-of-fit and sensitivity to level-of-service attributes. The results showed the technological potential of the HySolarKit, and that both behavioural stages may be effectively modelled through random utility theory. Estimation results allowed an interpretation of the main determinants of the investigated phenomena, making it possible to quantify the potential effects and the concerns towards such a green solution, and making it possible to draw up operative marketing strategies. In particular, the intention to adopt the kit mainly depends on socio-economic factors as well as activity-related and attitudinal attributes, whereas the probability of installing the kit is greatly affected, to the same extent, by installation cost, the charging cost and the weekly mileage driven.  相似文献   

16.
While the TRANSYT model for optimization of fixed-time traffic signals in a network of mixed transit and private vehicle traffic is well established, certain interactions between transit and nontransit vehicles are not properly modelled in TRANSYT. As a consequence, the optimal signal timing plan and network performance measures generated by TRANSYT may not be appropriate for the actual network. This paper briefly reviews a modelling procedure, adapted for use in the TRANSYT program, that goes some way toward overcoming TRANSYT's deficiencies in the representation of mixed traffic operation. The procedure is applied to a 6 kilometre corridor of mixed traffic operation in Toronto, Canada, to estimate the potential effects of incorporating streetcar operations in the optimization of fixed-time traffic signals.  相似文献   

17.
This paper proposes a conceptual framework to model the travel mode searching and switching dynamics. The proposed approach is structurally different from existing mode choice models in the way that a non-homogeneous hidden Markov model (HMM) has been constructed and estimated to model the dynamic mode srching process. In the proposed model, each hidden state represents the latent modal preference of each traveler. The empirical application suggests that the states can be interpreted as car loving and carpool/transit loving, respectively. At each time period, transitions between the states are functions of time-varying covariates such as travel time and travel cost of the habitual modes. The level-of-service (LOS) changes are believed to have an enduring impact by shifting travelers to a different state. While longitudinal data is not readily available, the paper develops an easy-to-implement memory-recall survey to collect required process data for the empirical estimation. Bayesian estimation and Markov chain Monte Carlo method have been applied to implement full Bayesian inference. As demonstrated in the paper, the estimated HMM is reasonably sensitive to mode-specific LOS changes and can capture individual and system dynamics. Once applied with travel demand and/or traffic simulation models, the proposed model can describe time-dependent multimodal behavior responses to various planning/policy stimuli.  相似文献   

18.
This paper addresses the impacts of different scheduling alternatives for a branching transit route. It examines different schedule alternatives that might be used to optimize the route performance in terms of the passenger traveling time distributed among branch passengers and trunk‐line passengers. The schedule alternatives considered include transit vehicle allocation to different branches, offset shifting across vehicles on different branches, and vehicle holding (slack time) in the transit vehicle schedule. With these variables, several vehicle schedules are devised and examined based on a wide variety of possible passenger boarding scenarios using deterministic service models. Test outcomes provide general conclusions about the performance of the strategies. Vehicle assignment leading to even headways among branches is generally preferred for the case of low passenger demand. However, when passenger demand is high, or the differences between the passenger demands on branches are significant, unequal vehicle assignment will be helpful to improve the overall route performance. Holding, as a proactive strategy in scheduling, has the potential to be embedded into the schedule as a type of slack time, but needs further evidence and study to determine the full set of conditions where it may be beneficial. Offset shifting does not show sufficient evidence to be an efficient strategy to improve route performance in the case of low or high passenger demand.  相似文献   

19.
The vehicle population of Beijing is sharply increasing at an average annual rate of 14.5%, causing severe transportation and environmental problems. The Beijing municipal government and the public have worked hard to control vehicular emissions since 1995. Strategies and measures have been introduced to regulate land use and traffic planning, emission control of in-use vehicles and new vehicles, fuel quality improvement, introduction of clean fuel vehicle technology and fiscal incentives. New development plans for Beijing will change the transportation structure by encouraging public transportation. For in-use vehicles, the I/M program has employed ASM tests since early 2003 and the government has encouraged the retirement of high-emission vehicles. For new vehicles, Beijing introduced Euro 1 and Euro 2 emission standards in early 1999 and 2003, respectively. It is also confirmed that Euro 3 standards will be introduced in 2005. At the same time, the fuel quality in Beijing was improved significantly, by banning lead and reducing sulfur among other changes. CNG and LPG were introduced in 1999 and are used in buses and taxis. Today Beijing has the largest CNG bus fleet in the world with more than 2000 dedicated CNG buses. Beijing has also focused on fiscal incentives such as tax deductions for new vehicles meeting enhanced emission standards to encourage their sales. These strategies and measures have had an impact on the control of vehicular emissions. Despite the rapid increase of the vehicle population by 60% between 1998 and 2003, total vehicular emissions have not increased. With the enhancement of vehicular emission control, the air quality in Beijing is improving as the city strives to its goal for a “Green Olympics”.  相似文献   

20.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号