首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

This paper presents a review of the available literature describing the methods of modelling the vibrational response of articulated vehicles to the road inputs at the tire contact points. It states and discusses the mathematical techniques that have been put forward for obtaining road input characteristics, for modelling the vehicles in a range of degrees of freedom, and for performing the analysis necessary to obtain the vibrational response. Finally the indices that have been proposed for ride comfort and ride safety are given and the manner in which various researchers relate these to the vibrational characteristics of the vehicles is described.  相似文献   

2.
ABSTRACT

A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles’ dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles – mainly automobiles – the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle’s ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.  相似文献   

3.
王乾廷  周晓军 《汽车工程》2006,28(12):1066-1069
为了在越野行驶车辆平顺性仿真系统中实时动态反映车辆的振动特性,提出了基于小波变换的松软越野路面突变性描述方法并分析突变性对车辆垂向振动的影响。通过小波变换对路面奇异点进行测定和定位,把越野车辆平顺性仿真系统看作是在有限时间内受到随机载荷激励的动力系统,分析其受路面突变载荷的车辆的垂直振动响应方差。结果表明,小波变换能较准确地判定路面奇异点并对其定位,可为越野车辆平顺性虚拟测试系统提供路面随机输入。  相似文献   

4.
Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions (‘Pareto-optimal solutions’) are also obtained by considering the trade-off between ride comfort and road handling.  相似文献   

5.
为了分析脉冲路面下轮毂电机偏心对电动汽车平顺性的影响,给出了脉冲路面车轮激励和开关磁阻电机激励的表示。建立了考虑轮毂电机质量和轮毂电机激励的电动汽车平面4自由度振动模型,推导出相应的状态方程和输出向量,确定了脉冲路面平顺性评价指标。实现了脉冲路面车轮激励和轮毂电机激励的仿真,在脉冲路面下进行了4种工况的平顺性仿真和比较。结果表明,脉冲路面下轮毂电机偏心对电动汽车平顺性有着不可忽视的影响,设计电动汽车时需要考虑轮毂电机偏心带来的负效应。  相似文献   

6.
The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heavy vehicle integrating either unconnected or coupled suspension, three dimensionless measures of suspension properties are defined and analysed—namely the pitch margin (PM), pitch stiffness ratio (PSR), and coupled pitch stiffness ratio (CPSR)—for different unconnected suspension tunings and load conditions. Dynamic responses of the vehicle with three different load conditions and five different tunings of the unconnected suspension are obtained under excitations arising from three different random road roughness conditions and a wide range of driving speeds, and braking manoeuvres. The responses are evaluated in terms of performance measures related to vertical and pitch ride, dynamic tyre load, suspension travel, and pitch-attitude control characteristics of the vehicle. Fundamental relationships between the vehicle responses and the proposed suspension measures (PM, PSR, and CPSR) are established, based on which some basic suspension tuning rules for heavy vehicles with unconnected suspensions are also proposed.  相似文献   

7.
This is a theoretical investigation into the effect of various suspension configurations on a tracked vehicle performance over bump terrains. The model developed is validated using published experimental data of the modal characteristics of the vehicle. The desired performance is based on ride comfort via the mixed objective function (MOF), which combines the crest factor of bounce acceleration, bounce displacement, angular acceleration, and pitch angle. The optimisation process involves evaluating the MOF for different numbers and locations of dampers and under different rigid bump road conditions and speeds. The system responses of the selected suspension configurations in the time and frequency domains are compared against the undamped suspension. The results show that the suspension configurations have a significant effect on the vehicle mobility over bump road profiles. For a five-road–wheel half model of a tracked vehicle, the maximum number of dampers to use for ride comfort over these road bumps is three with the dampers located at wheel positions 1, 2 and 5. This confirms the current practice for many tracked vehicles with 10 road wheels. However, it is further shown that the suspension fitted with two dampers at the extreme road wheels offer the best performance over various rigid bump terrains.  相似文献   

8.
Road Vehicle Suspension System Design - a review   总被引:8,自引:0,他引:8  
Based mainly on English language literature, information relating to the design of automobile suspension systems for ride comfort and control of wheel load variations for frequencies below body structure resonances is reviewed. The information is interpreted in the context of vehicles which travel through a wide speed range on roads of markedly differing quality, which do so carrying different loads and which are required to possess good handling qualities.

Sections are devoted to describing road surfaces, modelling vehicles and setting up performance criteria, and to passive, active, semi-active and slow-active system types. Methods for deriving active system control laws are outlined. Strengths and weaknesses of the various systems are identified and their relative performance capabilities and equipment requirements are discussed. Attention is given to adaptation of the suspension or control system parameters to changing conditions. Remaining research needs are considered.  相似文献   

9.
Dynamics of Tracked Vehicles   总被引:2,自引:0,他引:2  
This paper provides a brief review of the state-of-the-art of tracked vehicle dynamics, including mobility over soft terrain, ride dynamics over rough surfaces and manoeuvrability. It is found that considerable progress has been made in the development of analytical frameworks for evaluating and predicting tracked vehicle mobility over soft terrain, taking into account the characteristics of terrain response to normal and shear loading. Certain computer simulation models for tracked vehicle mobility have been gaining increasingly wide acceptance by industry and governmental agencies in product development and in procurement. It is also found that most of the research on tracked vehicle ride dynamics and manoeuvrability is confined to operations on rigid surfaces. To achieve a realistic evaluation and prediction of the dynamic behaviour of tracked vehicles in the field, the key is to have a better understanding of terrain response to dynamic vehicular loading, including its dynamic stiffness and damping. Challenges that face vehicle dynamicists in this emerging field are identified.  相似文献   

10.
针对行驶过程中由路面引起的汽车振动能量耗散问题,提出了基于汽车振动二自由度单轮模型的能量耗散特性频域分析方法。采用汽车振动二自由度单轮模型推导了模型的频率响应,确定了能量耗散振动响应量及其频率响应。将路面激励功率谱密度与振动响应量的功率谱密度和均方根值相结合,建立了能量耗散振动响应量统计特性和振动能量耗散平均功率的表示。采用Matlab开发了汽车振动二自由度单轮模型的能量耗散特性频域分析仿真程序,通过3种分析方案研究了由路面引起的汽车振动能量耗散特性。结果表明,汽车振动能量耗散平均功率与速度和路面等级相关,受到路面等级的影响较大;在以B级路面为主的国内城市行驶工况下,由路面引起的汽车振动能量耗散平均功率比较低。  相似文献   

11.
Vehicle-Generated Road Damage: A Review   总被引:9,自引:0,他引:9  
The literature concerned with road damage caused by heavy commercial vehicles is reviewed. The main types of vehicle-generated road damage are described and the methods that can be used to analyse them are presented. Attention is given to the principal features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Also discussed are those vehicle features which, to a first approximation, can be studied without consideration of the dynamics of the vehicle, including axle and tyre configurations, tyre contact conditions and static load sharing in axle group suspensions. The main emphasis of the paper is on the dynamic tyre forces generated by heavy vehicles: their principal characteristics, their simulation and measurement, the effects of suspension design on the forces and the methods that can be used to estimate their influence on road damage. Some critical research needs are identified.  相似文献   

12.
Heavy road vehicles play an important role in the economy of many countries by providing an efficient means of transporting freight. Such vehicles can also have a significant impact on safety, the infrastructure and the environment. The design of the suspension affects the performance of the vehicle in terms of ride, infrastructure damage, suspension working space, energy consumption, rollover stability, yaw stability, braking and traction. The published literature on suspension design for heavy road vehicles is reviewed. It is found that extensive knowledge exists, but that there are areas where improved understanding is needed. Areas identified as fundamental issues requiring attention include ride discomfort criteria, secondary suspensions, and controllable suspensions. Two issues in particular are examined in detail: suspension tuning and suspension configuration. In the tuning of suspension parameter values for vibration performance, numerical optimisation techniques have been used extensively, but generic tuning strategies have not been widely developed. Modal analysis is proposed as a technique for gaining the insight into vehicle vibration behaviour necessary to enable tuning strategies to be devised. As an example, the technique is applied to the pitch-plane vibration of a tractor-semitrailer. In analyses of new suspension configurations or concepts, comparison with alternative concepts is not always made. Lack of such comparisons makes the selection of an optimum concept difficult. Analysis of alternative concepts using simple mathematical models, and comparison of their performance using common criteria, is advocated for enabling informed selection of an optimum. An example involving two alternative roll control systems is used to demonstrate the issue.  相似文献   

13.
SUMMARY

This paper provides a brief review of the state-of-the-art of tracked vehicle dynamics, including mobility over soft terrain, ride dynamics over rough surfaces and manoeuvrability. It is found that considerable progress has been made in the development of analytical frameworks for evaluating and predicting tracked vehicle mobility over soft terrain, taking into account the characteristics of terrain response to normal and shear loading. Certain computer simulation models for tracked vehicle mobility have been gaining increasingly wide acceptance by industry and governmental agencies in product development and in procurement. It is also found that most of the research on tracked vehicle ride dynamics and manoeuvrability is confined to operations on rigid surfaces. To achieve a realistic evaluation and prediction of the dynamic behaviour of tracked vehicles in the field, the key is to have a better understanding of terrain response to dynamic vehicular loading, including its dynamic stiffness and damping. Challenges that face vehicle dynamicists in this emerging field are identified.  相似文献   

14.
Fundamental Issues in Suspension Design for Heavy Road Vehicles   总被引:8,自引:0,他引:8  
Heavy road vehicles play an important role in the economy of many countries by providing an efficient means of transporting freight. Such vehicles can also have a significant impact on safety, the infrastructure and the environment. The design of the suspension affects the performance of the vehicle in terms of ride, infrastructure damage, suspension working space, energy consumption, rollover stability, yaw stability, braking and traction. The published literature on suspension design for heavy road vehicles is reviewed. It is found that extensive knowledge exists, but that there are areas where improved understanding is needed. Areas identified as fundamental issues requiring attention include ride discomfort criteria, secondary suspensions, and controllable suspensions. Two issues in particular are examined in detail: suspension tuning and suspension configuration. In the tuning of suspension parameter values for vibration performance, numerical optimisation techniques have been used extensively, but generic tuning strategies have not been widely developed. Modal analysis is proposed as a technique for gaining the insight into vehicle vibration behaviour necessary to enable tuning strategies to be devised. As an example, the technique is applied to the pitch-plane vibration of a tractor-semitrailer. In analyses of new suspension configurations or concepts, comparison with alternative concepts is not always made. Lack of such comparisons makes the selection of an optimum concept difficult. Analysis of alternative concepts using simple mathematical models, and comparison of their performance using common criteria, is advocated for enabling informed selection of an optimum. An example involving two alternative roll control systems is used to demonstrate the issue.  相似文献   

15.
SUMMARY

The literature concerned with road damage caused by heavy commercial vehicles is reviewed. The main types of vehicle-generated road damage are described and the methods that can be used to analyse them are presented. Attention is given to the principal features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Also discussed are those vehicle features which, to a first approximation, can be studied without consideration of the dynamics of the vehicle, including axle and tyre configurations, tyre contact conditions and static load sharing in axle group suspensions. The main emphasis of the paper is on the dynamic tyre forces generated by heavy vehicles: their principal characteristics, their simulation and measurement, the effects of suspension design on the forces and the methods that can be used to estimate their influence on road damage. Some critical research needs are identified.  相似文献   

16.
SUMMARY

Based mainly on English language literature, information relating to the design of automobile suspension systems for ride comfort and control of wheel load variations for frequencies below body structure resonances is reviewed. The information is interpreted in the context of vehicles which travel through a wide speed range on roads of markedly differing quality, which do so carrying different loads and which are required to possess good handling qualities.

Sections are devoted to describing road surfaces, modelling vehicles and setting up performance criteria, and to passive, active, semi-active and slow-active system types. Methods for deriving active system control laws are outlined. Strengths and weaknesses of the various systems are identified and their relative performance capabilities and equipment requirements are discussed. Attention is given to adaptation of the suspension or control system parameters to changing conditions. Remaining research needs are considered.  相似文献   

17.
This paper outlines various analytical approaches of varying complexities to model the wheel in the ride dynamic formulation of off-road tracked vehicles. In addition to a proposed model, four analytical models available in the literature are compared to study their effectiveness in modeling the wheel/track-terrain interaction for ride dynamic evaluation of typical high mobility tracked vehicles. The ride dynamic model used in this study describes the bounce-pitch plane motion of an armoured personnel carrier (Ml 13 APC) traversing over an arbitrary rigid terrain profile at constant speed. The ride dynamic response of the tracked vehicle is evaluated with different wheel models, and compared against field-measured ride data. The relative performance of different wheel models are assessed based on the accuracy of response prediction and associated computational time. The proposed wheel model is found to perform very well in comparison, and is equally applicable for the case of wheeled vehicles.  相似文献   

18.
This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.  相似文献   

19.
肖雄建 《商用汽车》2012,(7):116-119
现代化的城市中,交通拥堵已经成为困扰城市发展的顽症.有限的道路资源已经难以满足快速增长的私家车数量所带来的交通膨胀.为了缓解城市拥堵,建立快捷高效的公共交通就成为了当务之急.  相似文献   

20.
In many European towns, the demand for fast and efficient mobility is frequently satisfied by means of two-wheeled vehicles. The improvement of comfort of two-wheeled vehicles used by tired and busy workers can increase safety in ground transport. Nowadays, multibody codes make it possible to predict the ride comfort of two-wheeled vehicles by means of time-domain or frequency-domain simulations. Comfort indices can be developed by post-processing the results of numerical simulations. This task is difficult, because the indices should depend on vehicle characteristics and should be independent of road quality and vehicle speed. Poor quality roads may generate nonlinear effects. Speed influences the trim of the vehicle and the wheelbase filtering, which takes place because the same road unevenness excites the front and rear wheel with a time delay which depends on the vehicle’s speed.

In this paper, the comfort of two-wheeled vehicles is studied by means of a frequency-domain approach. The wheelbase filtering is averaged considering typical missions of the vehicle. The missions are journeys with a forward speed that assumes different values according to a probability density function. Indices of comfort are calculated taking into account the human sensitivity. The examples show that the proposed comfort indices depend on suspensions’ characteristics and, hence, are useful design tools. Finally, some time-domain calculations are carried out to give emphasis to nonlinear effects and to show the limits of the frequency-domain analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号