首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future.  相似文献   

2.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

3.
This paper develops an integrated model to characterize the market penetration of autonomous vehicles (AVs) in urban transportation networks. The model explicitly accounts for the interplay among the AV manufacturer, travelers with heterogeneous values of travel time (VOTT), and road infrastructure capacity. By making in-vehicle time use more leisurely or productive, AVs reduce travelers’ VOTT. In addition, AVs can move closer together than human-driven vehicles because of shorter safe reaction time, which leads to increased road capacity. On the other hand, the use of AV technologies means added manufacturing cost and higher price. Thus, traveler adoption of AVs will trade VOTT savings with additional out-of-pocket cost. The model is structured as a leader (AV manufacturer)-follower (traveler) game. Given the cost of producing AVs, the AV manufacturer sets AV price to maximize profit while anticipating AV market penetration. Given an AV price, the vehicle and routing choice of heterogeneous travelers are modeled by combining a multinomial logit model with multi-modal multi-class user equilibrium (UE). The overall problem is formulated as a mathematical program with complementarity constraints (MPCC), which is challenging to solve. We propose a solution approach based on piecewise linearization of the MPCC as a mixed-integer linear program (MILP) and solving the MILP to global optimality. Non-uniform distribution of breakpoints that delimit piecewise intervals and feasibility-based domain reduction are further employed to reduce the approximation error brought by linearization. The model is implemented in a simplified Singapore network with extensive sensitivity analyses and the Sioux Falls network. Computational results demonstrate the effectiveness and efficiency of the solution approach and yield valuable insights about transportation system performance in a mixed autonomous/human driving environment.  相似文献   

4.
Traffic is multi-modal in most cities. However, the impacts of different transport modes on traffic performance and on each other are unclear – especially at the network level. The recent extension of the macroscopic fundamental diagram (MFD) into the 3D-MFD offers a novel framework to address this gap at the urban scale. The 3D-MFD relates the network accumulation of cars and public transport vehicles to the network travel production, for either vehicles or passengers. No empirical 3D-MFD has been reported so far.In this paper, we present the first empirical estimate of a 3D-MFD at the urban scale. To this end, we use data from loop detectors and automatic vehicle location devices (AVL) of the public transport vehicles in the city of Zurich, Switzerland. We compare two different areas within the city, that differ in their topology and share of dedicated lanes for public transport. We propose a statistical model of the 3D-MFD, which estimates the effects of the vehicle accumulation on car and public transport speeds under multi-modal traffic conditions. The results quantify the effects of both, vehicles and passengers, and confirm that a greater share of dedicated lanes reduces the marginal effects of public transport vehicles on car speeds. Lastly, we derive a new application of the 3D-MFD by identifying the share of public transport users that maximizes the journey speeds in an urban network accounting for all motorized transport modes.  相似文献   

5.
Fully autonomous vehicles (AVs) have the potential to considerably change urban mobility in the future. This study simulates potential AV operating scenarios in the Greater Toronto Area (GTA), Canada, and assesses transportation system performance on a regional level. For each scenario, the base capacities of certain types of road links are modified to simulate the theoretical increase in throughput enabled by AV driving behavior. Another scenario examines driverless parking operations in downtown Toronto. Simulation results indicate that the increased attractiveness of freeways relative to other routes leads to slightly increased average travel distance as vehicles divert to access higher capacity road links. Average travel time is found to decrease by up to one-fifth at the 90% AV market penetration level. Concurrently, localized increases in congestion suggest that proactive transportation planning will be needed to mitigate negative consequences of AV adoption, especially in relation to induced demand for personal automobile travel.  相似文献   

6.
Technological advances are bringing connected and autonomous vehicles (CAVs) to the ever-evolving transportation system. Anticipating public acceptance and adoption of these technologies is important. A recent internet-based survey polled 347 Austinites to understand their opinions on smart-car technologies and strategies. Results indicate that respondents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with equipment failure being their top concern. Their average willingness to pay (WTP) for adding full (Level 4) automation ($7253) appears to be much higher than that for adding partial (Level 3) automation ($3300) to their current vehicles.Ordered probit and other model specifications estimate the impact of demographics, built-environment variables, and travel characteristics on Austinites’ WTP for adding various automation technologies and connectivity to their current and coming vehicles. It also estimates adoption rates of shared autonomous vehicles (SAVs) under different pricing scenarios ($1, $2, and $3 per mile), choice dependence on friends’ and neighbors’ adoption rates, and home-location decisions after AVs and SAVs become a common mode of transport. Higher-income, technology-savvy males, who live in urban areas, and those who have experienced more crashes have a greater interest in and higher WTP for the new technologies, with less dependence on others’ adoption rates. Such behavioral models are useful to simulate long-term adoption of CAV technologies under different vehicle pricing and demographic scenarios. These results can be used to develop smarter transportation systems for more efficient and sustainable travel.  相似文献   

7.
Autonomous vehicles (AVs) are expected to act as an economically-disruptive transportation technology offering several benefits to the society and causing significant changes in travel behavior and network performance. However, one of the critical issues that policymakers are facing is the absence of a sound estimation of their market penetration. This study is an effort to quantify the effect of different drivers on the adoption timing of AVs. To this end, we develop an innovation diffusion model in which individuals’ propensities to adopt a new technology such as AVs takes influence from a desire to innovate and a need to imitate the rest of the society. It also captures various sources of inter-personal heterogeneity. We found that conditional on our assumptions regarding the changes in market price of AVs over time, their market penetration in our study region (Chicago metropolitan area) will eventually reach 71.3%. Further, model estimation results show that a wide range of socio-demographic factors, travel pattern indicators, technology awareness, and perceptions of AVs are influential in people’s AV adoption timing decision. For instance, frequent long-distance travelers are found to make the adoption decision more innovatively while those who have experienced an accident in their lifetime are found to be more influenced by word of mouth.  相似文献   

8.
This study is the first in the literature to model the joint equilibrium of departure time and parking location choices when commuters travel with autonomous vehicles (AVs). With AVs, walking from parking spaces to the work location is not needed. Instead, AVs will drop off the commuters at the workplace and then drive themselves to the parking spaces. In this context, the equilibrium departure/arrival profile is different from the literature with non-autonomous vehicles (non-AVs). Besides modeling the commuting equilibrium, this study further develops the first-best time-dependent congestion tolling scheme to achieve the system optimum. Also, a location-dependent parking pricing scheme is developed to replace the tolling scheme. Furthermore, this study discusses the optimal parking supply to minimize the total system cost (including both the travel cost and the social cost of parking supply) under either user equilibrium or system optimum traffic flow pattern. It is found that the optimal planning of parking can be different from the non-AV situation, since the vehicles can drive themselves to parking spaces that are further away from the city center and walking of commuters is avoided. This paper sheds light on future parking supply planning and traffic management.  相似文献   

9.
ABSTRACT

Automated vehicles (AVs) could completely change mobility in the coming years and decades. As AVs are still under development and gathering empirical data for further analysis is not yet possible, existing studies mainly applied models and simulations to assess their impact. This paper provides a comprehensive review of modelling studies investigating the impacts of AVs on travel behaviour and land use. It shows that AVs are mostly found to increase vehicle miles travelled and reduce public transport and slow modes share. This particularly applies to private AVs, which are also leading to a more dispersed urban growth pattern. Shared automated vehicle fleets, conversely, could have positive impacts, including reducing the overall number of vehicles and parking spaces. Moreover, if it is assumed that automation would make the public transport system more efficient, AVs could lead to a favouring of urbanisation processes. However, results are very sensitive to model assumptions which are still very uncertain (e.g. the perception of time in AVs) and more research to gain further insight should have priority in future research as well as the development of the models and their further adaptation to AVs.  相似文献   

10.
Emerging autonomous vehicles (AVs) and shared mobility systems per se will transform urban passenger transportation. Coupled together, shared AVs (SAVs) can facilitate widespread use of shared mobility services by providing flexible public travel modes comparable to private AV. Hence, it may be conjectured that future urban mobility is likely an on-demand service and AV private ownership is unappealing. Nonetheless, it is still unclear what observable and latent factors will drive public interest in (S)AVs, the answer to which will have important implications on transportation system performance. This paper aims to jointly model public interest in private AVs and multiple SAV configurations (carsharing, ridesourcing, ridesharing, and access/egress mode) in daily and commute travels with explicit treatment of the correlations across the (S)AV types. To this end, multivariate ordered outcome models with latent variables are employed, whereby latent attitudes and preferences describing traveler safety concern about AV, green travel pattern, and mobility-on-demand savviness are accounted for using structural and measurement equations. Drawing from a stated preference survey in the State of Washington, important insights are gained into the potential user groups based on the socio-economic, built environment, and daily/commute travel behavior attributes. Key policies are also offered to promote public interest in (S)AVs by scrutinizing the marginal effects of the latent variables.  相似文献   

11.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

12.
Wang  Kailai  Akar  Gulsah 《Transportation》2019,46(6):2117-2136

Autonomous vehicles (AVs), with an expectation of improving road safety, are closer to becoming a reality. A large number of people are still concerned about how AVs would operate in real-life driving environments. The present paper investigates the factors that affect people’s views of the interactions between AVs and other road users based on a large sample from the 2015 and 2017 Puget Sound Travel Surveys. We specifically highlight the effects of the neighborhood environment and road infrastructure. We estimate a generalized ordered logit model to demonstrate the extent to which certain neighborhood environment and road infrastructure features affect individuals’ safety perceptions of AVs, controlling for demographics, daily travel patterns, and general interest in riding AVs. The results reveal that designated bicycle facilities are positively associated with individuals’ safety perceptions related to AVs. We find that residents from neighborhoods with more pedestrian facilities are more likely to express higher levels of concern on AVs’ capabilities to react to the environment. Our results also suggest that people living in mixed-use neighborhoods are more confident in sharing the road with AVs. The findings provide useful implications for effective policy interventions and infrastructure provisions that may affect the market penetration rates of AVs while keeping up the standards for other road users, such as bicyclists and pedestrians.

  相似文献   

13.
‘Autonomous cars’ are cars that can drive themselves without human control. Autonomous cars can safely drive closer together than cars driven by humans, thereby possibly increasing road capacity. By allowing drivers to perform other activities in the vehicle, they may reduce the value of travel time losses (VOT). We investigate the effects of autonomous cars using a dynamic equilibrium model of congestion that captures three main elements: the resulting increase in capacity, the decrease in the VOT for those who acquire one and the implications of the resulting changes in the heterogeneity of VOTs. We do so for three market organizations: private monopoly, perfect competition and public supply. Even though an increased share of autonomous cars raises average capacity, it may hurt existing autonomous car users as those who switch to an autonomous car will impose increased congestion externalities due to their altered departure time behaviour. Depending on which effect dominates, switching to an autonomous vehicle may impose a net negative or positive externality. Often public supply leads to 100% autonomous cars, but it may be optimal to have a mix of car types, especially when there is a net negative externality. With a positive (negative) externality, perfect competition leads to an undersupply (oversupply) of autonomous cars, and a public supplier needs to subsidise (tax) autonomous cars to maximise welfare. A monopolist supplier ignores the capacity effect and adds a mark-up to its price.  相似文献   

14.
This paper examines the potential impact of autonomous vehicles on commuters’ value of travel time (VOTT). In particular, we focus on the effect on auto commuters in small and medium-sized metropolitan areas, concerning the spatial variability across urban areas, suburbs, and rural areas. We design a stated choice experiment to elicit potential changes in 1,881 auto commuters’ valuation of travel time in autonomous vehicles and apply a mixed logit model to quantify the changes in the value of travel time if taking autonomous vehicles. The results of this study suggest that the effect of autonomous vehicles on the VOTT is spatially differentiated. We find that riding in a private autonomous vehicle reduces the commuting VOTT of suburban, urban, and rural drivers by 32%, 24%, and 18%, respectively, compared to 14%, 13%, and 8% for riding in a shared autonomous vehicle. Finally, we discuss the implications of these lower values of time on transportation and land use planning.  相似文献   

15.
While connected, highly automated, and autonomous vehicles (CAVs) will eventually hit the roads, their success and market penetration rates depend largely on public opinions regarding benefits, concerns, and adoption of these technologies. Additionally, the introduction of these technologies is accompanied by uncertainties in their effects on the carsharing market and land use patterns, and raises the need for tolling policies to appease the travel demand induced due to the increased convenience. To these ends, this study surveyed 1088 respondents across Texas to understand their opinions about smart vehicle technologies and related decisions. The key summary statistics indicate that Texans are willing to pay (WTP) $2910, $4607, $7589, and $127 for Level 2, Level 3, and Level 4 automation and connectivity, respectively, on average. Moreover, affordability and equipment failure are Texans’ top two concerns regarding AVs. This study also estimates interval regression and ordered probit models to understand the multivariate correlation between explanatory variables, such as demographics, built-environment attributes, travel patterns, and crash histories, and response variables, including willingness to pay for CAV technologies, adoption rates of shared AVs at different pricing points, home location shift decisions, adoption timing of automation technologies, and opinions about various tolling policies. The practically significant relationships indicate that more experienced licensed drivers and older people associate lower WTP values with all new vehicle technologies. Such parameter estimates help not only in forecasting long-term adoption of CAV technologies, but also help transportation planners in understanding the characteristics of regions with high or low future-year CAV adoption levels, and subsequently, develop smart strategies in respective regions.  相似文献   

16.
In the recent years many developments took place regarding automated vehicles (AVs) technology. It is however unknown to which extent the share of the existing transport modes will change as result of AVs introduction as another public transport option. This study is the first where detailed traveller preferences for AVs are explored and compared to existing modes. Its main objective is to position AVs in the transportation market and understand the sensitivity of travellers towards some of their attributes, focusing particularly on the use of these vehicles as egress mode of train trips. Because fully-automated vehicles are not yet a reality and they entail a potentially high disruptive way on how we use automobiles today, we apply a stated preference experiment where the role of attitudes in perceiving the utility of AVs is particularly explored in addition to the classical instrumental variables and several socio-economic variables. The estimated discrete choice model shows that first class train travellers on average prefer the use of AVs as egress mode, compared to the use of bicycle or bus/tram/metro as egress. We therefore conclude that AVs as last mile transport between the train station and the final destination have most potential for first class train travellers. Results show that in-vehicle time in AVs is experienced more negatively than in-vehicle time in manually driven cars. This suggests that travellers do not perceive the theoretical advantage of being able to perform other tasks during the trip in an automated vehicle, at least not yet. Results also show that travellers’ attitudes regarding trust and sustainability of AVs are playing an important role in AVs attractiveness, which leads to uncertainty on how people will react when AVs are introduced in practice. We therefore state the importance of paying sufficient attention to these psychological factors, next to classic instrumental attributes like travel time and costs, before and during the implementation process of AVs as a public transport alternative. We recommend the extension of this research to revealed preference studies, thereby using the results of field studies.  相似文献   

17.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

18.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   

19.
Vyas  Gaurav  Famili  Pooneh  Vovsha  Peter  Fay  Daniel  Kulshrestha  Ashish  Giaimo  Greg  Anderson  Rebekah 《Transportation》2019,46(6):2081-2102
Transportation - Autonomous vehicles (AVs) could change travel patterns of the population significantly and with the rapid improvements in AV technology, transportation planners should address AV...  相似文献   

20.
Many studies have begun investigating possible transportation landscapes in the autonomous vehicle (AV) era, but empirical results on longer-term decisions are limited. We address this gap using data collected from a survey designed and implemented for Georgia residents in 2017–2018. Focusing on a hypothetical all-AV future, this section of the survey included questions regarding advantages/disadvantages of AVs, short-term mode choice impacts, medium-term impacts on activity patterns, and long-term behavioral changes – specifically, whether/how AVs will influence individuals to change residential location and the number of cars in the household. We hypothesize that AVs could act in concert with attitudinal preferences to stimulate changes in these long-term decisions, and that some medium-term activity changes triggered by AVs could motivate people to relocate their residence or shed household vehicles. We applied exploratory factor analysis to measure the perceived likelihood that AVs would prompt various medium-term changes. We then included some of those measures, among other variables, in a cross-nested logit (CNL) model of the choice of the residential location/vehicle ownership bundle. Although more than half of respondents expected “no change” in their bundle, we found that younger, lower income, pro-suburban, and pro-non-car-mode individuals were more likely to anticipate changing their selections. In addition, some expected medium-term impacts of AVs influenced changes in these longer-term choices. We further applied the CNL model to two population segments (Atlanta and non-Atlanta-region residents). We found notable improvement in goodness of fit and different effects of factors across segments, signifying the existence of geography-related taste heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号