共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea level and Eddy Kinetic Energy variability in the Bay of Biscay, inferred from satellite altimeter data 总被引:1,自引:0,他引:1
Twelve years (1993–2005) of altimetric data, combining different missions (ERS-1/2, TOPEX/Poseidon, Jason-1 and Envisat), are used to analyse sea level and Eddy Kinetic Energy variability in the Bay of Biscay at different time-scales. A specific processing of coastal data has been applied, to remove erroneous artefacts. Likewise, an optimal interpolation has been used, to create a series of regional Sea Level Anomaly maps, merging data sets from two satellites.The sea level presents a trend of about 2.7 mm/year, which is within the averaged values of sea level rise in the global ocean. Frequency spectra show that the seasonal cycle is the main time-scale affecting the sea level and Eddy Kinetic Energy variability. The maximum sea level occurs in October, whilst the minimum is observed in April. The steric effect is the cause of this annual cycle. The Northern French shelf/slope presents intense variability which is likely due to internal tides. Some areas of the ocean basin are also characterised by intense variability, due to the presence of eddies.The Eddy Kinetic Energy, in turn, is higher from December to May, than during the rest of the year and presents a weak positive trend from April 1995 to April 2005. Several documented mesoscale events, occurring at the end of 1997 and during 1998, are analysed. Altimetry maps prove to be a useful tool to monitor swoddy-like eddies from their birth to their decay, as well as the inflow of seasonal slope water current into the southeastern corner of the Bay of Biscay. 相似文献
2.
根据太平湾海域实测潮位资料,对该海域的潮汐性质、潮位特征值、理论最低潮面、平均海平面、设计高水位、设计低水位等进行了分析计算。结果表明:太平湾海区的潮汐属不正规半日混合潮性质,日潮不等现象明显;平均海平面在国家85基面下0.05 m,理论最低潮面在国家85基面下1.70 m;设计高水位1.62 m,设计低水位-1.36 m(国家85基面)。 相似文献
3.
提出了利用GPS PPK潮位测量技术进行超长航道疏浚工程测量水位控制的方法,并在天津港30万t级航道疏浚工程中得到了效果验证和实际应用。GPS PPK采用的是后处理相位差分技术,其作用距离不受数据传输的约束,可以达到50~80 km,相对于GPS RTK无验潮水深测量、潮位推算技术等远距离潮位控制方法,具有精度高、可靠、现势性好等优势,在超长航道的水位控制方面具有较高的推广价值。 相似文献
4.
Estimation of global and regional air–sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air–sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325–331.] for estimating the air–sea gas transfer velocity (k) from the mean square slope of short wind waves (40–100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The resulting collocated, near-coincident normalized radar backscatter (σ°) data from both altimeters present a unique opportunity to intercalibrate the two instruments, compare derived fields of transfer velocity and estimate the precision of the algorithm. Initial results suggest that the monthly gas transfer velocity fields generated from the two altimeters are very similar. Comparison of along-track Ku-band and C-band σ° during the collinear phase indicates that observed discrepancies are due primarily to small offsets between TOPEX and Jason-1 σ°. The Jason-1 k values have an apparent bias of + 4% relative to TOPEX, while the precision estimated from the two observation sets is 5–7% and scales with k. The resultant long-term, global, mean k is 16 cm/h. 相似文献
5.
A Mean Dynamic Topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model 总被引:2,自引:0,他引:2
M.-H. Rio P.-M. Poulain A. Pascual E. Mauri G. Larnicol R. Santoleri 《Journal of Marine Systems》2007,65(1-4):484
In the Mediterranean Sea, where the mean circulation is largely unknown and characterized by smaller scales and less intensity than in the open ocean, the interpretation of altimetric Sea Level Anomalies (SLA) is rather difficult. In the context of operational systems such as MFS (Mediterranean Forecasting System) or MERCATOR, that assimilate the altimetric information, the estimation of a realistic Mean Dynamic Topography (MDT) consistent with altimetric SLA to be used to reconstruct absolute sea level is a crucial issue. A method is developed here to estimate the required MDT combining oceanic observations as altimetric and in-situ measurements and outputs from an ocean general circulation model (OGCM).In a first step, the average over the 1993–1999 period of dynamic topography outputs from MFS OGCM provides a first guess for the computation of the MDT. Then, in a second step, drifting buoy velocities and altimetric data are combined using a synthetic method to obtain local estimates of the mean geostrophic circulation which are then used to improve the first guess through an inverse technique and map the MDT field (hereafter the Synthetic Mean Dynamic Topography or SMDT) on a 1/8° resolution grid.Many interesting current patterns and cyclonic/anticyclonic structures are visible on the SMDT obtained. The main Mediterranean coastal currents are well marked (as the Algerian Current or the Liguro–Provenço–Catalan Current). East of the Sicily channel, the Atlantic Ionian Stream divides into several main branches crossing the Ionian Sea at various latitudes before joining at 19°E into a unique Mid-Mediterranean Jet. Also, strong signatures of the main Mediterranean eddies are obtained (as for instance the Alboran gyre, the Pelops, Ierapetra, Mersa-Matruh or Shikmona anticyclones and the Cretan, Rhodes or West Cyprius cyclones). Independent in-situ measurements from Sea Campaigns NORBAL in the North Balearic Sea and the North Tyrrhenian Sea and SYMPLEX in the Sicily channel are used to validate locally the SMDT: deduced absolute altimetric dynamic topography compares well with in-situ observations. Finally, the SMDT is used to compute absolute altimetric maps in the Alboran Sea and the Algerian Current. The use of absolute altimetric signal allows to accurately follow the formation and propagation of cyclonic and anticyclonic eddies in both areas. 相似文献
6.
利用中短期验潮资料调和分析获得11个主要分潮的调和常数实现水位推算的方法,已在海洋测绘、疏浚工程测量等领域得到推广。但不进行全部站点的同步验潮测量,仅收集不同期历史验潮数据进行分析,获得的潮汐调和常数难以满足水深测量水位改正的精度要求。提出2种调和常数优化方法,通过增强不同期验潮数据调和常数的相关性,提高水位推算的精度,并以实例验证不同期验潮数据用于余水位差分水位推算的可行性。 相似文献
7.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem. 相似文献
8.
针对岛屿地区长期潮位资料缺乏,给工程设计水位确定带来一定困难的问题,利用浙江沿海16个潮位站一年的潮位资料,推算本海域各站特征潮位及设计水位,并采用线性相关分析法对特征潮位与设计水位间关系进行研究,得到两者间规律性的成果,可为浙江沿海港口工程前期规划、设计等阶段估算工程设计水位提供参考。 相似文献
9.
The annual cycle of nanoflagellates (NF) including autotrophic (ANF), heterotrophic (HNF) and mixotropic (MNF) flagellates carried out in a temperate sea (Central Cantabrian Sea, southern Bay of Biscay) is presented. Three stations with characteristics ranging from coastal to oceanic conditions were analysed in order to compare NF response to this gradient. Samples were monthly collected at each station at three different depths between February 2002 and December 2002. CTD profiles were also taken at each station. NF were grouped according to their trophic status into ANF, HNF and MNF. Abundance and biomass were determined for each group. The annual cycle showed a general pattern consisting in a maximum in July with secondary maxima in March and October and minimum values in May. ANF were the most important fraction, making a major contribution (nearly 75%) to total NF biomass in all stations. HNF represented over 20% along the cycle, except for a peak in spring found in every station. MNF reached less than 5%, showing low seasonability. Small flagellates (2–5 µm) dominated throughout the cycle. Microplankton community was also analysed in terms of abundance and biomass. A significant positive correlation (r2 = 0.49) was obtained between 2–5 µm NF and 10–20 µm HNF–MNF biomasses, suggesting a possible trophic relationship between these groups which should be cautiously taken. No significant relationships were found between microplankton and NF or between nutrients and ANF, indicating that the regulation of NF numbers is complex and probably implicates other groups. In addition to this, the unexpected 2002 Chl a concentration pattern and the misplacing of upwelling events render necessary to perform additional studies to fully understand the precise behaviour of NF in the Cantabrian Sea. To the best of our knowledge, this is the first study of a NF cycle in a temperate sea that considers all functional groups. 相似文献
10.
11.
X.A. Padin G. Navarro M. Gilcoto A.F. Rios F.F. Pérez 《Journal of Marine Systems》2009,75(1-2):280-289
An empirical algorithm has been developed to compute the sea surface CO2 fugacity (fCO2sw) in the Bay of Biscay from remotely sensed sea surface temperature (SSTRS) and chlorophyll a (chl aRS) retrieved from AVHRR and SeaWiFS sensors, respectively. Underway fCO2sw measurements recorded during 2003 were correlated with SSTRS and chl aRS data yielding a regression error of 0.1 ± 7.5 µatm (mean ± standard deviation). The spatial and temporal variability of air–sea fCO2 gradient (ΔfCO2) and air–sea CO2 flux (FCO2) was analyzed using remotely sensed images from September 1997 to December 2004. An average FCO2 of ? 1.9 ± 0.1 mol m? 2 yr? 1 characterized the Bay of Biscay as a CO2 sink that is suffering a significant long-term decrease of 0.08 ± 0.05 mol m? 2 yr? 2 in its capacity to store atmospheric CO2. The main parameter controlling the long-term variability of the CO2 uptake from the atmosphere was the air–sea CO2 transfer velocity (57%), followed by the SSTRS (10%) and the chl aRS (2%). 相似文献
12.
Interannual variation of the Polar Front in the Japan/East Sea from summertime hydrography and sea level data 总被引:1,自引:0,他引:1
The Polar Front in the Japan/East Sea separates the southern warm water region from the northern cold water region. A merged TOPEX/POSEIDON and ERS-1/2 altimeter dataset and upper water temperature data were used to determine the frontal location and to examine the structure of its interannual variability from 1993 to 2001. The identified frontal location, where sea surface height gradient has a maximum about 10–20 cm over the horizontal distance of 100 km, corresponds well to the maximum subsurface horizontal temperature gradient. The front migrates more widely (36°N–41°N) in the western part of the sea than in the eastern part. The interannual migration induces large variability in upper water temperatures and sea surface height in the western region. Responsible physical mechanisms were studied using a reduced-gravity model. Differences between inflow and outflow change the total volume of warm water, and total warm water volume change in the warm water region uniformly pushes the front in the meridional direction across its mean position in the model simulation. Interannual variation of wind stress causes relatively wide migration of the modeled front in the western part. 相似文献
13.
黄浦江为感潮河段长航道,与其他类似航道相比,黄浦江还存在港区集中、船舶进口时间不一且并非在最优乘潮时间之后即靠泊码头的特点。针对上述问题,对进港时间与乘潮历时的相关关系进行研究,采用多站水位联合计算的方式,提出以进口时间作为限制条件,根据具体进口时间(潮时)推算航行到各航段所对应时间(潮时),并结合单站涨落潮时间与船舶过站时间的数学关系,进而计算需乘潮历时和可能乘到的潮位的方法。通过该方法的计算,在进口时间受限的情况下,可得到船舶靠泊各个港区所需的最佳乘潮时间和对应的乘潮水位,并以此分别确定航道各段的维护高程,合理利用有限资源,减少工程投资。 相似文献
14.
The North Bay of Biscay continental shelf is a major French demersal fishery, but little was known on the trophic food web of its benthic communities. In order to determine the benthic trophic web, the objectives of this study are to describe the macro- and megafaunal benthic community structure (species richness, abundance and biomass) and to establish the trophic pathways (food sources and trophic levels) by applying carbon and nitrogen stable isotopic analysis to the main benthic and demersal species (invertebrates and fish). Two distinct benthic communities have been identified: a muddy sand community within the central part of the bay, and an outer Bay of Biscay Ditrupa sand community of higher species richness, abundance and biomass than the muddy sand community. Deposit-feeders, suspension feeders and predators, distributed in three main trophic levels, dominate both communities. Large differences in stable carbon ratio values within the primary consumers provide evidence of two different food sources: i) a pelagic food source made up of recent sedimenting particulate organic matter on which zooplankton and suprabenthos feed and ii) a benthic detrital food source supplying deposit feeders and partly benthic suspension feeders. Differences in isotopic signatures were also observed within the upper trophic levels that allowed estimation of the contribution of each food source component to the diet of the upper consumers. Finally, the use of stable isotopic composition together with the species' feeding strategy allow identification of the main differences between the trophic functioning of the two benthic communities and highlight the importance of the role of detrital pathways in the carbon cycling within the continental shelf benthic trophic web. 相似文献
15.
Abstract State coastal zone management programs are responding to the potential impacts of accelerated sea level rise through a wide range of activities and policies. This article provides a brief overview of the Coastal Zone Management Act and other federal laws that provide the basis for coastal state regulatory activities. It surveys the level of response to sea level rise by state coastal management programs in 24 marines coastal states, from formal recognition to implementation of policies addressing the issue. Individual state CZMP responses and policies that have been implemented or proposed are categorized. The adaptation of sea level rise to ongoing institutional objectives is discussed and policy constraints and trends are summarized. 相似文献
16.
The response of the Black Sea mean level to atmospheric pressure (AP) and wind forcing is investigated using 5 years of TOPEX/POSEIDON (T/P hereafter) data. A coherence analysis is first applied to mean sea level and pressure to examine the validity of the inverse barometer (IB) approximation over this area. As expected, it reveals very significant deviations from an IB response attributed to the narrowness of the Bosphorus Strait and its limiting role in water exchanges. A comparison is drawn with the Mediterranean Sea case. A single basin version of the Candela analytical model [Candela, J., 1991. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–300], which takes linear friction at the strait into account, is then used. The model explains a significant part of the T/P mean sea level variance (about 30%, while the IB correction only explains 5% of its variance) and provides a means to correct the altimeter data for the pressure effect much better than the standard IB effect. The response of the mean sea level to wind forcing is then analysed. Coherence analysis between sea level and along-strait wind stress (WS) reveals a significant coherence at periods ranging from 40 to 100 days, with an almost steady phase of 270°. This result is confirmed with a multiple coherence analysis (mean sea level vs. WS and AP). A plausible mechanism is a piling-up of water at the northern or southern end of the strait due to along-strait wind forcing. The associated along-strait pressure gradient would modify the barotropic flow in the strait and then the mean sea level. Using an extension of the Candela model, we show that this mechanism is consistent with T/P mean sea level observations. 相似文献
17.
The need for a Global Ocean Observing System Global (GOOS) is now widely appreciated. Parts of GOOS are currently being implemented already. In this paper, written on the request of the joint Scientific and Technical Committee of GOOS, we present some of the scientific issues that need to be addressed for the further development of the Ocean and Marine Meteorology Service module of GOOS. This module is concerned with monitoring and prediction of sea level (both tsunamis and storm surges) and wind driven waves (wind–sea and swell), among other things. For each of these we discuss the current state-of-the-art, indicate what observations are needed and make suggestions for future modelling development. 相似文献
18.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1. 相似文献
19.
针对近年来全球变暖,海平面上升影响河口地区水文特性的问题,对海平面上升对长江口涨落潮历时差的影响进行研究。采用二维潮流数学模型的方法,模拟在长江口上游大通的洪枯季及年平均径流量条件下,海平面上升100 cm对涨落潮历时的影响。结果表明:海平面上升减小了长江口北支上半段、南支和南北港等中上游区域的涨落潮历时差,对靠近外海的北支末段和南北槽的涨落潮历时差影响很小。海平面上升加大了河口地区的涨潮动力,使长江口的涨落潮历时差有所减小,由此对长江口地区的盐水入侵和泥沙输运带来的影响必须引起重视。 相似文献