首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper investigates the effects of mobile phone use while driving on traffic speed and headways, with particular focus on young drivers. For this purpose, a field survey was carried out in real road traffic conditions, in which drivers' speeds and headways were measured while using or not using a mobile phone. The survey took place within a University Campus area, allowing to distinguish between settings approximating to either free flow or interrupted flow conditions. Linear and loglinear regression methods were used to investigate the effects of mobile phone use and several other young driver characteristics, such as gender, driving experience and annual distance travelled, on vehicle speeds and headways. Separate models were developed for average free flow, interrupted flow, as well as for total average speed. Results show that mobile phone use leads to a statistically significant reduction in traffic speeds of young drivers in all types of traffic conditions. Furthermore, male and female drivers reduce their speed similarly when using a mobile phone while driving. However, male drivers using their mobile phone drive at lower speeds than female drivers not using their mobile phones. Sensitivity analysis revealed that, among all explanatory variables, the effect of mobile phone use on speed was most important. Accordingly, vehicle headways appear to increase for drivers using their mobile phone. However, this effect could not be statistically validated, due to the strong correlation between speed and headway.  相似文献   

2.
The use of mobile phones while driving—one of the most common driver distractions—has been a significant research interest during the most recent decade. While there has been a considerable amount research and excellent reviews on how mobile phone distractions influence various aspects of driving performance, the mechanisms by which the interactions with mobile phone affect driver performance is relatively unexamined. As such, the aim of this study is to examine the mechanisms involved with mobile phone distractions such as conversing, texting, and reading and the driving task, and subsequent outcomes. A novel human-machine framework is proposed to isolate the components and various interactions associated with mobile phone distracted driving. The proposed framework specifies the impacts of mobile phone distraction as an inter-related system of outcomes such as speed selection, lane deviations and crashes; human-car controls such as steering control and brake pedal use and human-environment interactions such as visual scanning and navigation. Eleven literature-review/meta-analyses papers and 62 recent research articles from 2005 to 2015 are critically reviewed and synthesised following a systematic classification scheme derived from the human-machine system framework. The analysis shows that while many studies have attempted to measure system outcomes or driving performance, research on how drivers interactively manage in-vehicle secondary tasks and adapt their driving behaviour while distracted is scant. A systematic approach may bolster efforts to examine comprehensively the performance of distracted drivers and their impact over the transportation system by considering all system components and interactions of drivers with mobile phones and vehicles. The proposed human-machine framework not only contributes to the literature on mobile phone distraction and safety, but also assists in identifying the research needs and promising strategies for mitigating mobile phone-related safety issues. Technology based countermeasures that can provide real-time feedback or alerts to drivers based on eye/head movements in conjunction with vehicle dynamics should be an important research direction.  相似文献   

3.
Phone use during driving causes decrease in situation awareness and delays response to the events happening in driving environment which may lead to accidents. Reaction time is one of the most suitable parameters to measure the effect of distraction on event detection performance. Therefore, this paper reports the results of a simulator study which analysed and modelled the effects of mobile phone distraction upon reaction time of the Indian drivers belonging to three different age groups. Two different types of hazardous events: (1) pedestrian crossing event and (2) road crossing event by parked vehicles were included for measuring drivers’ reaction times. Four types of mobile phone distraction tasks: simple conversation, complex conversation, simple texting and complex texting were included in the experiment. Two Weibull AFT (Accelerated Failure Time) models were developed for the reaction times against both the events separately, by taking all the phone use conditions and various other factors (such as age, gender, and phone use habits during driving) as explanatory variables. The developed models showed that in case of pedestrian crossing event, the phone use tasks: simple conversation, complex conversation, simple texting and complex texting caused 40%, 95%, 137% and 204% increment in the reaction times and in case of road crossing event by parked vehicles, the tasks caused 48%, 65%, 121% and 171% increment in reaction times respectively. Thus all the phone use conditions proved to be the most significant factors in degrading the driving performance.  相似文献   

4.
As of November 2008, the number of cell phone subscribers in the US exceeded 267 million, nearly three times more than the 97 million subscribers in June 2000. This rapid growth in cell phone use has led to concerns regarding their impact on driver performance and road safety. Numerous legislative efforts are under way to restrict hand-held cell phone use while driving. Since 1999, every state has considered such legislation, but few have passed primary enforcement laws. As of 2008, six states, the District of Columbia (DC), and the Virgin Islands have laws banning the use of hand-held cell phones while driving. A review of the literature suggests that in laboratory settings, hand-held cell phone use impairs driver performance by increasing tension, delaying reaction time, and decreasing awareness. However, there exists insufficient evidence to prove that hand-held cell phone use increases automobile-accident-risk. In contrast to other research in this area that uses questionnaires, tests, and simulators, this study analyzes the impact of hand-held cell phone use on driving safety based on historical automobile-accident-risk-related data and statistics, which would be of interest to transportation policy-makers. To this end, a pre-law and post-law comparison of automobile accident rate measures provides one way to assess the effect of hand-held cell phone bans on driving safety; this paper provides such an analysis using public domain data sources. A discussion of what additional data are required to build convincing arguments in support of or against legislation is also provided.  相似文献   

5.
This research study was designed to assess by simulation the efficacy of incident detection by cellular phone call-in programs. The assessment was conducted by varying the proportion of drivers with cellular phones on the highway so as to mirror the cellular industry statistics that show a continued growth of ownership of cellular phones in the United States. An analytical model, which combined simulation and the limited field data available in the literature, was used to determine measures of effectiveness of the cellular phone-based detection system. The results showed that a cellular phone detection system offers fast incident detection times and higher detection rates for both shoulder and lane blocking incidents. For example, in moderate traffic flow (i.e. 1,550 vehicles per hour per lane), 90 percent of incidents blocking two lanes were detected in 1.5 minutes when the proportion of drivers with cellular phones was one out of 10 drivers, even with only 20 percent of them willing to report incidents. When the current proportion of cellular ownership, i.e. 1 out of 3, was used in the simulation, the detection time improved to 0.8 minutes. The simulation analysis of incident detection by cellular phones also showed that there is a direct relationship between the probability of detection and the detection time; that is, the specification of a higher detection rate resulted in slower detection times. This is in sharp contrast with the results of field study of automatic incident detection (AID) systems which demonstrated an inverse relationship between probability of detection and detection time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
This paper presents an approach to investigating the impact of information and communication technologies (ICTs) on travel behaviour and its environmental effects. The paper focuses on the spatial dispersion of out-of-home activities and travel (activity space) and greenhouse gas emissions (GHGs) at the level of the individual. An original method, combining spatial analysis in a geographic information system with advanced regression techniques, is proposed to explore these potentially complex relationships in the case of access to mobile phones and the internet, while taking into account the influence of socio-economics and built environment factors. The proposed methodology is tested using a 7-day activity-based survey in Quebec City in 2003?C2004, a juncture of particular interest because these ICTs had recently crossed the threshold of 40?% (mobile phone) and 60?% (home-based internet) penetration at the time. The study period also largely pre-dates the era of mobile internet access. Among other results, socio-demographic factors were found to significantly affect both ICT access and travel out-comes. The built environment, represented by neighbourhood typologies, also played an important role. However, it was found that after controlling for the self-selection effect, built environment and socio-demographics, those who had a mobile phone available produced 30?% more GHGs during the observed week than those who did not. This higher level of GHG pro-duction was accompanied by a 12?% higher measure of activity dispersion. On the other hand, having internet access at home was associated with lower GHGs (?19?%) and lesser activity dispersion (?25?%). Possibly, mobile phones enable individuals to cover more space and produce more emissions, while the internet provides opportunities to stay at home or avoid motorized travel thus reducing emissions. The estimated effects of having a mobile phone were not only negative but also larger in magnitude from the environmental point of view than those of fixed internet access. However, the results of this study also suggest that access to mobile phones and internet may have substantial and compensatory effects at the individual level that are undetected when using model structures that do not take into account that unobserved factors may influence both ICT choices and travel outcomes.  相似文献   

7.

Accidents are the third main cause of death in Europe with 40% of them due to road traffic accidents (RTAs). These victims are mainly young male drivers/riders and elderly pedestrians. One quarter of the deaths and 10% of the injuries are associated with alcohol. Consumption of alcohol is generally increasing. Ignorance of the effects of alcohol on the body and on the performance of skilled mental and physical tasks contributes to the number of road users who are impaired by alcohol. Alcohol is a depressant drug which impairs information processing in the brain. The risk of being involved in a RTA increases very rapidly with increasing concentration of alcohol in the body. There are probably two groups of drivers, the majority who do not drink, or who drink very little, before driving and those who regularly drink whether or not they are going to drive. The former (the social drinker) can do without his drink, the latter (the problem drinker) cannot. Various legislative measures have been introduced in different countries with varying success. Most developed countries now make it illegal to drive with more than a stipulated concentration of alcohol in the body. Much discussion centres round what further legal steps should be taken to reduce drinking and driving, especially the more widespread use of random roadside breath testing of drivers. Doctors are much concerned in this public health problem which causes such misery and waste of resources and are involved in research on the physical and psychological effects of alcohol, the best methods of educating drivers on these effects and, where necessary, identifying those who are misusing alcohol to the extent that they should be kept off the road.  相似文献   

8.
An increasing number of legislative efforts have been undertaken to prohibit the use of hand-held wireless devices while driving. As of July 2012, ten states and the District of Columbia enforce laws banning the use of hand-held cell phones while driving. Thirty-nine states and the District of Columbia have banned text messaging while driving. Recent studies of driver behavior suggest that hand-held wireless device usage negatively impacts driver performance. However few studies at the aggregate level address the plausible link between the use of hand-held wireless devices while driving, increased risk of automobile accidents, and government legislative efforts to reduce such risk. This paper analyzes data at the aggregate level and builds a regression model to estimate the long term accident rate reduction due to a hand-held ban. This model differs from previous studies, which consider short term accident rate reduction, by considering time trends in the accident rate due to the ban. Additionally, counties considered in this analysis are placed into groups based on driver density, defined by the number of licensed drivers per centerline mile of roadway, and a separate analysis is performed within these groups. This approach allows one to better quantify the effect of hand-held bans in counties of different driver densities. Results from this paper suggest that bans on hand-held wireless device use while driving reduce the rate of personal injury accidents in counties with high levels of driver density, but may increase accident rates in counties with low driver density levels. These results can inform transportation policymakers interested in reducing automobile-accident-risk attributable to the use of hand-held wireless devices while driving.  相似文献   

9.
In a paper recently published in this journal (Nikolaev, A.G., Robbins, M.J., Jacobson, S.H., 2010. Evaluating the impact of legislation prohibiting hand-held cell phone use while driving. Transportation Research Part A 44, 182–193.), Nikolaev et al. (2010) provide evidences on the effect of hand-held cell phone bans on driving safety. More specifically, they analyze the impact of a state-wide ban on hand-held cell phone use while driving on the number of fatal automobile and personal injury accidents per 100,000 licensed drivers per year and conclude that the ban had a significant negative impact on both the mean fatal accident rate and the mean personal injury accident rate. In this paper I argue that they lack of a good identification strategy that enables them to correctly identify the causal effect of the ban. I also provide evidence that the effect they find is a combination of the ban effect and of unobservable variables not accounted for in their analysis. Finally, I provide a way where one can control for unobservables when estimating the causal effect of the ban and find that indeed that ban appears to have a negative effect on fatal automobile accidents.  相似文献   

10.
New mobility data sources like mobile phone traces have been shown to reveal individuals’ movements in space and time. However, socioeconomic attributes of travellers are missing in those data. Consequently, it is not possible to partition the population and have an in-depth understanding of the socio-demographic factors influencing travel behaviour. Aiming at filling this gap, we use mobile internet usage behaviour, including one’s preferred type of website and application (app) visited through mobile internet as well as the level of usage frequency, as a distinguishing element between different population segments. We compare the travel behaviour of each segment in terms of the preference for types of trip destinations. The point of interest (POI) data are used to cluster grid cells of a city according to the main function of a grid cell, serving as a reference to determine the type of trip destination. The method is tested for the city of Shanghai, China, by using a special mobile phone dataset that includes not only the spatial-temporal traces but also the mobile internet usage behaviour of the same users. We identify statistically significant relationships between a traveller’s favourite category of mobile internet content and more frequent types of trip destinations that he/she visits. For example, compared to others, people whose favourite type of app/website is in the “tourism” category significantly preferred to visit touristy areas. Moreover, users with different levels of internet usage intensity show different preferences for types of destinations as well. We found that people who used mobile internet more intensively were more likely to visit more commercial areas, and people who used it less preferred to have activities in predominantly residential areas.  相似文献   

11.
The current study contributes to the existing injury severity modeling literature by developing a multivariate probit model of injury severity and seat belt use decisions of both drivers involved in two-vehicle crashes. The modeling approach enables the joint modeling of the injury severity of multiple individuals involved in a crash, while also recognizing the endogeneity of seat belt use in predicting injury severity levels as well as accommodating unobserved heterogeneity in the effects of variables. The proposed model is applied to analyze the injury severity of drivers involved in two-vehicle road crashes in Denmark.The empirical analysis provides strong support for the notion that people offset the restraint benefits of seat belt use by driving more aggressively. Also, men and those individuals driving heavy vehicles have a lower injury risk than women and those driving lighter vehicles, respectively. At the same time, men and individuals driving heavy vehicles pose more of a danger to other drivers on the roadway when involved in a crash. Other important determinants of injury severity include speed limit on roadways where crash occurs, the presence (or absence) of center dividers (median barriers), and whether the crash involves a head-on collision. These and other results are discussed, along with implications for countermeasures to reduce injury severities in crashes. The analysis also underscores the importance of considering injury severity at a crash level, while accommodating seat belt endogeneity effects and unobserved heterogeneity effects.  相似文献   

12.
Driver sleepiness contributes to a considerable proportion of road accidents, and a fit-for-duty test able to measure a driver’s sleepiness level might improve traffic safety. The aim of this study was to develop a fit-for-duty test based on eye movement measurements and on the sleep/wake predictor model (SWP, which predicts the sleepiness level) and evaluate the ability to predict severe sleepiness during real road driving. Twenty-four drivers participated in an experimental study which took place partly in the laboratory, where the fit-for-duty data were acquired, and partly on the road, where the drivers sleepiness was assessed. A series of four measurements were conducted over a 24-h period during different stages of sleepiness. Two separate analyses were performed; a variance analysis and a feature selection followed by classification analysis. In the first analysis it was found that the SWP and several eye movement features involving anti-saccades, pro-saccades, smooth pursuit, pupillometry and fixation stability varied significantly with different stages of sleep deprivation. In the second analysis, a feature set was determined based on floating forward selection. The correlation coefficient between a linear combination of the acquired features and subjective sleepiness (Karolinska sleepiness scale, KSS) was found to be R = 0.73 and the correct classification rate of drivers who reached high levels of sleepiness (KSS  8) in the subsequent driving session was 82.4% (sensitivity = 80.0%, specificity = 84.2% and AUC = 0.86). Future improvements of a fit-for-duty test should focus on how to account for individual differences and situational/contextual factors in the test, and whether it is possible to maintain high sensitive/specificity with a shorter test that can be used in a real-life environment, e.g. on professional drivers.  相似文献   

13.
In previous works, we have shown two-car households to be better suited than one-car households for leveraging the potential benefits of the battery electric vehicle (BEV), both when the BEV simply replaces the second car and when it is used optimally in combination with a conventional car to overcome the BEV’s range limitation and increase its utilization. Based on a set of GPS-measured car movement data from 64 two-car households in Sweden, we here assess the potential electric driving of a plug-in hybrid electric vehicle (PHEV) in a two-car household and compare the resulting economic viability and potential fuel substitution to that of a BEV.Using estimates of near-term mass production costs, our results suggest that, for Swedish two-car households, the PHEV in general should have a higher total cost of ownership than the BEV, provided the use of the BEV is optimized. However, the PHEV will increasingly be favored if, for example, drivers cannot or do not want to optimize usage. In addition, the PHEV and the BEV are not perfect substitutes. The PHEV may be favored if drivers require that the vehicle be able to satisfy all driving needs (i.e., if drivers don’t accept the range and charge-time restrictions of the BEV) or if drivers requires an even larger battery in the BEV to counter range anxiety.We find that, given a particular usage strategy, the electric drive fraction (EDF) of the vehicle fleet is less dependent on whether PHEVs or BEVs are used to replace one of the conventional cars in two-car households. Instead, the EDF depends more on the usage strategy, i.e., on whether the PHEV/BEV is used to replace the conventional car with the higher annual mileage (“the first car”), the less used car (“the second car”), or is used flexibly to substitute for either in order to optimize use. For example, from a fuel replacement perspective it is often better to replace the first car with a PHEV than to replace the second with a BEV.  相似文献   

14.
Abstract

The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature review and a crash data analysis were carried out. Based on a proposed conceptual model, knowledge gaps are identified that need to be addressed for a better understanding of the relation between limitations on auditory information while cycling. Results suggest that the concerns regarding the use of electronic devices while cycling and the advent of hybrid and electric vehicles are justified. Listening to music and conversing on the phone negatively influence cyclists’ auditory perception, self-reported crash risk and cycling performance. With regard to electric cars, a recurring problem is their quietness at low speeds. Implications of these findings in terms of cycling safety are discussed.  相似文献   

15.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

16.
Driving behavior is generally considered to be one of the most important factors in crash occurrence. This paper aims to evaluate the benefits of utilizing context-relevant information in the driving behavior assessment process (i.e. contextual driving behavior assessment approach). We use a Bayesian Network (BN) model that investigates the relationships between GPS driving observations, individual driving behavior, individual driving risks, and individual crash frequency. In contrast to prior studies without context information (i.e. non-contextual approach), the data used in the BN approach is a combination of contextual features in the surrounding environment that may contribute to crash risk, such as road conditions surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-contextual data such as instantaneous driving speed and the acceleration/deceleration of a vehicle. An information-aggregation mechanism is developed to aggregates massive amounts of vehicle GPS data points, kinematic events and context information into drivel-level data. With the proposed model, driving behavior risks for drivers is assessed and the relationship between contextual driving behavior and crash occurrence is established. The analysis results in the case study section show that the contextual model has significantly better performance than the non-contextual model, and that drivers who drive at a speed faster than others or much slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on freeways are more likely to be involved in crash events. In addition, younger drivers, and female drivers with higher VMT are found to have higher crash risk.  相似文献   

17.
Doherty  Sean T.  Andrey  Jean C. 《Transportation》1997,24(3):227-251
Despite improvements in road safety over the past several decades, accident rates remain high for young drivers. One accident countermeasure that is expected to improve the safety record of this group is graduated licensing. The philosophy behind this licensing system is that novice drivers, of whom the majority are young, should be restricted to relatively safe driving environments during the initial learning period. Graduated licensing was implemented in the Province of Ontario, Canada in 1994. The objective of this study is to estimate the potential benefits and costs for young drivers associated with two components of the Ontario graduated licensing package: the late-night driving curfew and the high-speed roadway restrictions. Based on accident and travel data for the year 1988, accident-involvement rates per kilometre driven were calculated for different driver groups for various combinations of time of day and roadway speed limit. These rates were then applied to the expected mobility profiles of young drivers affected by graduated licensing. The results of the study support the late-night curfew and suggest that this component of the licensing package should reduce total accident involvements for the affected group by up to 10 percent and fatal accident involvements by up to 24 percent, while reducing their total driving by only four percent. By contrast, the empirical evidence suggest that the high-speed roadway restrictions are likely to increase accident involvements, and thus it is strongly recommended that this component of Ontario's graduated licensing package be changed.  相似文献   

18.
One full year of high-resolution driving data from 484 instrumented gasoline vehicles in the US is used to analyze daily driving patterns, and from those infer the range requirements of electric vehicles (EVs). We conservatively assume that EV drivers would not change their current gasoline-fueled driving patterns and that they would charge only once daily, typically at home overnight. Next, the market is segmented into those drivers for whom a limited-range vehicle would meet every day’s range need, and those who could meet their daily range need only if they make adaptations on some days. Adaptations, for example, could mean they have to either recharge during the day, borrow a liquid-fueled vehicle, or save some errands for the subsequent day. From this analysis, with the stated assumptions, we infer the potential market share for limited-range vehicles. For example, we find that 9% of the vehicles in the sample never exceeded 100 miles in one day, and 21% never exceeded 150 miles in one day. These drivers presumably could substitute a limited-range vehicle, like electric vehicles now on the market, for their current gasoline vehicle without any adaptation in their driving at all. For drivers who are willing to make adaptations on 2 days a year, the same 100 mile range EV would meet the needs of 17% of drivers, and if they are willing to adapt every other month (six times a year), it would work for 32% of drivers. Thus, it appears that even modest electric vehicles with today’s limited battery range, if marketed correctly to segments with appropriate driving behavior, comprise a large enough market for substantial vehicle sales. An additional analysis examines driving versus parking by time of day. On the average weekday at 5 pm, only 15% of the vehicles in the sample are on the road; at no time during the year are fewer than 75% of vehicles parked. Also, because the return trip home is widely spread in time, even if all cars plug in and begin charging immediately when they arrive home and park, the increased demand on the electric system is less problematic than prior analyses have suggested.  相似文献   

19.
Abstract

New technologies, especially advances in telecommunications, have had profound impacts on everyday life and brought even greater changes to some business models. Taxis represent one of the major modes of transportation in urban areas but they face a number of problems, including their environmental impacts. The status of the taxi industry in Taiwan is revealed and analyzed in this study. A new business model for the extensive and popular use of smart phones is proposed. However, it is important to know whether their use is both effective and safe. Two field experiments were executed to examine the effects on taxi drivers of using a navigation system installed in a GPS PDA phone. The results revealed that the efficiency of drivers using such a portable navigation system was better than those relying on paper maps in unfamiliar urban areas. Furthermore, performance in terms of safety was also better than those who used an on-board navigation system. In summary, incorporating e-technology can promote a taxi company's competitiveness and a driver's performance and safety as well as offer environmental benefits.  相似文献   

20.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号