首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[Objectives]This paper aims to address the numerical simulation problems of the dynamic response of ships subject to near-, medium- and far-field underwater explosions by establishing several numerical methods and calculation models. [Methods]First, load and fluid-structure interaction models are established on the basis of the Eulerian finite element method and acoustic finite element method using the field-split technique, and FSLAB fluid-structure interaction software is developed. Next, near-, medium- and far-field underwater explosions are numerically simulated respectively. The shock wave propagation law, bubble shape and load evolution characteristics of near free-surface and near-wall underwater explosions are obtained, and the shock response characteristics of a spherical shell and ship subject to far-field underwater explosions are analyzed. Finally, the FSLAB software results are compared with the analytical solutions, reference solutions and experimental data. [Results]The results show that the FSLAB fluid-structure interaction software developed in this paper is effective and accurate in simulating the impact damage of underwater explosions on warships. [Conclusion]This study can provide a basis and support for the power assessment of underwater anti-explosion and shock design of warships. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

2.
[Objectives]This study focuses on the feasibility of a ship resistance model test in an ice field of small ice floes made of substitute material in order to reveal the resistance components and thereby provide technical support for the design of ice-going ships. [Methods ] Ship resistance test in ice floes made of polypropylene (PP) instead of natural refrigerated ice is conducted. By adjusting the sizes, shapes, numbers of ice floes, the random ice field with a given concentration is generated. The geometric phase transition theory predicts that there exists a critical concentration which divides the random ice field into discrete phase (concentration is less than critical value) and connected phase (concentration is greater than critical value). [Results]The main components of ice resistance in the discrete phase are open water resistance and ship-ice collision resistance, while ice resistance in the connected phase includes ice friction resistance, open water friction resistance and collision resistance. If the fractal dimension of the random ice field is used to redefine the ice resistance coefficient, it is nearly constant in the trial range (speed 0.3–0.9 m/s) when the concentration is smaller than the critical value. When the concentration is greater than the critical value, the ice friction resistance is inversely proportional to speed. [Conclusions]Polypropylene can replace frozen ice in the prediction of ice resistance. The pure ice resistance of an ice field is divided into two components: ice resistance arising from collision and ice friction resistance arising from accumulation. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

3.
[Objectives]In order to control the first longitudinal vibration mode of propulsion shafting systems, a dynamic vibration absorber with disc spring negative stiffness is proposed and its experimental verification carried out. [Methods]A test bench is established for the propulsion shafting system containing a dynamic vibration absorber with negative stiffness. According to the first longitudinal vibration mode of the shafting, a dynamic vibration absorber with negative stiffness integrated into the thrust bearing is developed. Vibration transmission tests under different rotational speeds, static thrusts and negative stiffness are then carried out, and acceleration response data on the thrust bearing foundation and shafting is obtained. [Results ] The results show that the developed dynamic vibration absorber with negative stiffness can achieve vibration suppression of 7.8 dB for the thrust bearing foundation in the first longitudinal mode of the propulsion shafting with a mass ratio of 1.6%, and the vibration control effect of the negative stiffness dynamic vibration absorber is maintained at 3.3 dB when the natural frequency changes by 5% and the thrust changes by 40%. The vibration response on the thrust bearing foundation and shafting do not deteriorate even at non-optimal negative stiffness. [Conclusions]This study shows that a dynamic vibration absorber with negative stiffness can effectively suppress vibration transmission at the first longitudinal mode of a shafting under different rotational speeds. © 2023 Authors. All rights reserved.  相似文献   

4.
[Objective]This paper aims to study the characteristics and calculation method of the vibration and sound radiation of single ring-stiffened cylindrical shells with porous fiber composite materials installed in the inner wall under acoustic excitation. [Method ] Based on the equivalent fluid theory model of Johnson–Champoux–Allard (JCA) and the transfer matrix of the multilayer medium, a theoretical formula of the sound absorption coefficient of multilayer sound absorption structures is derived. The three methods for calculating the vibration and sound radiation of a single ring-stiffened cylindrical shell with porous fiber materials under acoustic excitation, namely acoustic solid modeling of porous media, finite element model combined with theoretical formula and imposition of impedance boundary on sound absorption coefficient, are then verified and compared. Finally, the influences of sound-absorbing material's thickness, backed-air gap, static flow resistance, and material arrangement order on the acoustic absorption performance of the cylindrical shell are investigated. [Results]The results show that laying porous fiber composite materials on the cylindrical shell internally can reduce the vibration and acoustic radiation of cylindrical shell structure. The sound absorption coefficient curve can quickly and effectively predict the resulting trend of the vibration and sound radiation of the cylindrical shell. [Conclusion]The acoustic absorption performance of sound absorption structures can be effectively improved through the rational design of their properties and arrangement order of the sound-absorbing materials in order to achieve the purpose of vibration and noise reduction. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

5.
[Objectives ] Aiming at the accurate posture stabilization problem of an under-actuated unmanned surface vehicle (USV) in GPS-denied environments, a monocular visual servo stabilization control scheme is proposed based on homography.[Methods]By virtue of the homography decomposition technique, posture errors with an unknown scale factor are directly reconstructed from current and desired images, which thoroughly removes the calibration of extrinsic camera parameters and priori information on visual targets; with respect to the under-actuation constraint, a periodic function to persistently excite the yaw angle is incorporated into the continuous time-variant output feedback controller, allowing the USV to be stabilized in the absence of image depth, movement velocities and model parameters.[Results]Under the framework of the Lyapunov theory, the closed-loop visual servo system of the USV is rigorously proven to be asymptotically stable by Barbalat lemma.[Conclusions]By installing an onboard monocular camera, USV posture errors can be precisely stabilized with the aid of the proposed visual servo strategy, providing significant technique support for practical applications including docking, berthing, dynamic positioning, etc. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

6.
[Objectives]It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. [Methods ] First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force.[Results ] The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases.[Conclusions ] The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

7.
[Objective]This paper studies the coupled damage effects of a ship's structure due to the internal blast loading of a warhead. [Methods]Blast tests with cased charge data are conducted to verify the effectiveness of the coupled SPH-FEM approach, and numerical calculations are then performed on real ship compartment scale model tests to analyze the coupled fragmentation and shockwave damage effects of an explosion in a confined cabin.[Results]The results show that the fragments caused by the detonation of the warhead will first cause local damage to the cabin structure. The shockwave will exacerbate the local damage, and blasted openings will further increase the space for the propagation and diffusion of the shockwave inside the chamber, which will in turn cause damage to the adjacent structures. The simple equivalence of the warhead to a bare charge does not give a true picture of the effect of the warhead on the ship's structure, and fragmentation plays a significant role in the detonation of the warhead.[Conclusions]The results of this study show that employing the coupled SPH-FEM numerical method to calculate the coupling damage effects on a ship's structure can accurately reproduce the warhead damage pattern in tests, thereby providing support for the improved assessment of the damage of naval structures under warhead detonation. © 2022 Chinese Journal of Ship Research. All rights reserved.  相似文献   

8.
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.  相似文献   

9.
A mechanical model of visco-elastic material is established in order to investigate viscous effect in dynamic growing crack-tip field of mode Ⅱ. It is shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity, namely, (σε) ∝r^-1/(n-1). The asymptotic solutions of separatied variables of stress, stain and displacement in crack-tip field are obtained by asymptotic analysis, and the results of numerical value of stress and strain in crack-tip field are obtained by shooting method. Through numerical calculation, it is shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. By the asymptotic analysis to the crack-tip field, the fracture criterion of mode Ⅱ dynamic growing crack of visco-elastic materials is put forward from the point of view of strain.  相似文献   

10.
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are per-formed to investigate the resistance characteristics of single-phase water, which is forced to flow through vertical annuli. The gap sizes are 0.9, 1,4 and 2.4ram, respectively. The experiments are conducted under condition of 1 atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has llttie relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.  相似文献   

11.
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle’s (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV’s motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.  相似文献   

12.
[Objectives]For marine nuclear power plants, the relative displacement of the pump supported by a vibration isolation system should be strictly restricted. In order to improve the shock resistance of a vibration isolation system with displacement limiters, the parameter optimization and parametric deviation influence are studied. [Methods]The theoretical model of a double-stage vibration isolation system with typical limiter parameters is established, the analysis of the shock response characteristics of the system is carried out using the direct integration method, the optimal limiter parameters are obtained using a genetic algorithm, and the influence of parameter deviation on the shock resistance of the system is studied. [Results]Limiter parameters significantly affect the shock response characteristics of the vibration isolation system. The optimal limiter parameters improve the shock resistance of the system, but parameter deviation has a great influence on shock resistance. Based on the influence of parameter deviation, a deviation control strategy is proposed in which the elastic parameter should have a positive deviation and the gap parameter a negative deviation. The simulation results show that the proposed strategy can effectively alleviate the shock resistance degradation caused by deviation.[Conclusions]The results of this study can be used to guide the design, manufacturing and variation control of limiters for vibration isolation systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

13.
[Objective]This paper aims to establish a dynamic model of a floating raft vibration isolation system with a liquid tank in order to study the mass effect of the liquid medium, tank form, structural stiffness and loading rate on acoustic performance. [Methods]A floating raft system with a cuboidal or cylindrical liquid tank is taken as the research object, and a fluid-structure coupling finite element dynamic model is established. The dynamic force transmission rate and power flow are then used to evaluate the acoustic performance of the system. The influence of the mass effect of the liquid medium, tank form, structural stiffness and loading rate of tank volume on the acoustic performance of the floating raft system are analyzed.[Results]The results show similar laws obtained through the calculation and analysis of the floating raft system with two types of tanks. The structural stiffness of the tank affects the mass effect of the liquid medium in the tank to a certain extent. [Conclusions]If full advantage is to be taken of the liquid mass effect in the tank with a large loading rate to improve the acoustic performance of the floating raft system, the design of the liquid tank and raft structure must have sufficient stiffness. In addition, under the condition that the floating raft structure has sufficient stiffness, its acoustic performance will improve significantly as the tank loading rate increases in the relevant low frequency range. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

14.
[Objective]Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. [Method]First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multiobjective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. [Results]Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. [Conclusion ] The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

15.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

16.
The dynamic responses of any floating platform are dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.  相似文献   

17.
The problem of oblique wave(internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation;the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green’s integral theorem suitably with the introduction of appropriate Green’s functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples(having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of ripples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal ripples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to.These theoretical observations are supported by graphical results.  相似文献   

18.
[Objective]In order to study the dynamic response characteristics and influence laws of a marine gear transmission-propulsion system, a series of bench tests is carried out.[Methods]First, a biaxial gear transmission-propulsion system test bench including a cross connection gear is built. Experiments to test the acceleration response of the gearbox body and propulsion shaft system are then carried out, and the influence of speed, driving mode, axial static thrust, axial dynamic excitation force from the propeller and other factors on the dynamic response characteristics of the system are compared and analyzed. [Results]The experimental results show that the transmission law of the vibration acceleration response of the gear transmission-propulsion system is mainly at the meshing frequency and its multipliers, as well as peaks in the low frequency band of 30–80 Hz under certain working conditions. [Conclusion]This study can provide technical support for the vibration and noise reduction design of gear transmission-propulsion systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

19.
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.  相似文献   

20.
Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号