首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
“碳达峰、碳中和”的目标下,我国力争2030年前实现碳达峰,2060年前实现碳中和,是党中央经过深思熟虑作出的重大战略决策。在此背景下,国内海上风电得到快速发展,相应的风电施工装备—风电安装船不断建造新船、引进国外装备投入使用。但国内在风电安装船的操纵和使用依然处于初始阶段、船舶操纵经验累计严重不足,相应专业操纵人员又非常缺乏。针对当前盛行带DP定位操作系统的这类风电安装船在现场施工作业期间船舶移船定位,进行简要阐述,确保电安装船在海上风电场施工过程中安全运营和发挥最大使用效率。  相似文献   

2.
李伟  冯浩 《船舶工程》2020,42(S1):211-214
以起重能力为1200T的自升式风电安装船为研究对象,为解决传统固桩楔块固桩操作不便、费时费力等问题,设计了一套结构简单,操作方便的液压桩腿固定装置,详述了该装置的设计原理及结构组成。利用Ansys有限元分析软件,研究了液压桩腿固定装置在托航工况下的力学性能。并对该装置进行了实验验证,证明了设计方案的可行性和合理性,为相关领域的应用提供借鉴。  相似文献   

3.
自升式风电安装船桩腿及升降系统现状与发展   总被引:8,自引:5,他引:3  
综述了自升式海洋风电安装船的桩腿结构、升降系统组成及主要技术参数特征;通过对桩腿结构、升降系统及动力源进行对比,指出了未来海洋风电安装船桩腿及其升降系统的发展方向:即适应30m以上深水作业环境、升降速度更快、效率更高、具有更好的稳定性、可靠性,为进一步的设计研究指明方向和解决思路.  相似文献   

4.
海上风电安装船的发展趋势研究   总被引:4,自引:4,他引:0  
随着海上风力发电产业的迅速发展,风电安装船需求越来越大,并且风电安装船是高附加值工程船,因此这一市场的吸引力将越来越受到造船界重视,竞争将越来越激烈,但海上风电场施工成本高、海上作业时间长及工期长等问题的存在延缓了海力发电产业的发展。因此,本文将着重对海上风电结构物施工、安装过程的单一海工设备发展进行浅析,为探索深水化、大型化、专业化、集成化的海上风电安装船来完成深海域基础施工及风机安装问题提供设计参考。  相似文献   

5.
柳宏 《机电设备》2012,(6):36-38
文章介绍了国内海上风电产业的现状,并结合实际分析了海上风车安装船订市场的发展趋势。  相似文献   

6.
海上风电行业迅速发展,对风电安装船的研究更加值得关注。基于某自航自升式风电安装船,使用Sesam软件建立有限元模型。以安全性、经济性为目标,在倒K型原桩腿型式的基础上,比选K型、X型桩腿型式,分析风暴自存工况及作业工况下3种桩腿构型的结构重量、最大位移、各构件的屈服和屈曲强度(UC值)及抗倾覆能力,得出X型是风电安装船推荐的桩腿结构型式,为风电安装船桩腿选型提供参考。  相似文献   

7.
海上风电安装船关键部位结构强度研究   总被引:2,自引:0,他引:2  
海上风机吊装作业船是建设海上风电场的关键设备,具备自航、自升、运输、起重等功能,安装作业工况复杂。利用有限元软件对海上风机吊装船的船体平台和桩腿、桩靴、固桩架等关键结构的力学性能进行了较为全面的研究和分析。计算结果表明,船体和其他关键结构的强度与刚度均满足要求。研究工作有助于掌握和了解该船型的结构特点和各关键结构的应力水平,对结构设计和相应规范的制定有一定的参考价值。  相似文献   

8.
近年来,随着国内海上风电行业的蓬勃发展,市场对自升式风电安装船的需求日益迫切。桩腿是影响自升式风电安装船作业安全性的关键环节,桩腿设计也是自升式风电安装船的关键技术难点之一;而海上风电场的选址逐渐向离岸更远、水深更大的方向发展,客观上也对桩腿适应更恶劣海况条件的能力提出了更高要求。本文结合近年来多型自升式风电安装船桩腿设计经验,分析研究了桩腿总强度计算和优化的过程,及其与海况环境、作业条件、可变载荷等参数之间的相关性,为自升式风电安装船的桩腿设计提供了有效方法。  相似文献   

9.
赵媛媛 《船舶》2015,(2):94-100
简述了3 200 t风电安装船的总体布置及主要功能,针对柴油机驱动的全回转舵桨的动力推进装置、自动化的电站系统、风电机组DP1(动力定位)安装定位系统、风电机组的浮式运输系统和船舶座底配套高压冲洗水系统方案进行介绍与分析,从而描绘出该船在机电系统设计方面的特点与亮点。  相似文献   

10.
风电安装船功能及经济性分析   总被引:1,自引:0,他引:1  
《舰船科学技术》2014,(5):49-54
随着海上风电产业迅猛发展,风电安装船需求越来越大,并且风电安装船是高附加值工程船,因此这一市场的吸引力越来越受到造船界重视,竞争越来越激烈。本文梳理了风电安装船当前在国内外的应用和订造情况,分析了风电安装船功能与造价的经济性,总结其功能配置的影响因素。为把握风电安装船发展趋势,推出适应市场需求的设计方案提供参考。  相似文献   

11.
The cost of foundations for offshore wind turbines constitutes approximately 35% of the total cost of an offshore wind farm. The bucket foundations show significant potential due to their superior transportation and installation efficiencies compared to pile foundations, leading to potential cost savings for the foundation of up to 30%. For a bucket foundation to be installed successfully, the penetration resistance must be predicted. However, there is currently a lack of clarity on how to select a suitable calculation method for penetration resistance based on known geological parameters to guide construction. In order to evaluate the current methods of calculation for bucket foundation penetration resistance, this study combines theoretical calculation methods with two sets of practical measurement data from the field. The calculation methods of penetration resistance for bucket foundation are first reviewed and categorized. The applicability range of each method and the parameters needed for calculation are given. Next, according to the measured data in the process of penetration of bucket foundation on site, the evolution of compartment pressure, tilt angle, resistance and required suction in the process of penetration are analyzed. Finally, the reviewed methods are compared to the results of two practical projects in order to analyze the differences between them and make recommendations for the calculation technique. The findings can be used as a guide for calculating the bucket foundation's penetration resistance in complex geological conditions.  相似文献   

12.
韩强  姚震球  陈家旺  杨新利 《船舶》2011,22(5):15-20
以海上风机吊装作业船为对象,采用MSC.PATRAN软件建立全船结构有限元模型;通过该船的运输、安装等不同作业状况的分析,确定典型计算工况,并进行典型工况下的载荷分析和计算工作;对该船在典型工况下的应力进行计算和分析,得到了全船详细应力分布、变形情况。计算结果可以为海上风机吊装作业船的整体强度评估、船体结构优化提供有效依据,对该类型船的设计开发也具有指导意义。  相似文献   

13.
海上风力机安装技术研究(英文)   总被引:1,自引:0,他引:1  
Wind power has made rapid progress and should gain significance as an energy resource, given growing interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resources, offshore wind energy resources are more promising candidates for development. Sea winds are generally stronger and more reliable and with improvements in technology, the sea has become a hot spot for new designs and installation methods for wind turbines. In the present paper, based on experience building offshore wind farms, recommended foundation styles have been examined. Furthermore, wave effects have been investigated. The split installation and overall installation have been illustrated. Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed. This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.  相似文献   

14.
Installation complexities are one of the major challenges in the floating offshore wind turbine (OWT) industry. The modern concept introduced by the SFI-MOVE project is an effort to overcome the complexities by utilizing a low-height lifting mechanism. It is common to idealize a crane in the lifting mechanism as a rigid body since the structural deflections are smaller than the responses introduced by the other system components. However, structural flexibility can play an essential role in demanding offshore operations with smaller acceptable tolerances. In this study, lifting cranes are modeled using the finite element method and simplified by implementing equivalent 3D beam elements. Dynamic analysis is performed for various environmental conditions, and the responses of the crane structure and the OWT are calculated for each load case. This research reveals that crane structure flexibility influences the relative motion between a floating spar buoy and an OWT during mating operations. Crane structural flexibility contributes significantly to the OWT rotations. In addition, the response deviation between using rigid and flexible cranes increases as the excitation force increases. Therefore, it is recommended to consider the crane structural flexibility in the calculation when strict installation tolerances are needed.  相似文献   

15.
海上风电技术特性对比分析   总被引:1,自引:0,他引:1  
刘悦  时志刚  胡颖  张婷 《船舶工程》2012,34(1):95-99
从海上风能开发利用的技术包括所涉及风电场建设(机组排列、安装及运输、运行监控等)、风电机组设计、并网(海上高压系统、海底电缆、岸上接入设施等)等方面,对比分析海上风电与陆上风电的技术差异,结果表明海上风电在基础安装、运营维护等方面较陆上风电要求更高、难度更大。为进一步发展海上风电提供了参考。  相似文献   

16.
The vertical axis wind turbine (VAWT) configuration has many advantages for an offshore wind turbine installation. The VAWT is omnidirectional and its rotating mechanical components can be placed close to sea level. In this paper, the structural analysis of a VAWT blade structure subject to a critical load case was investigated with two methods, an analytical model and a finite element (FE) model. It was shown that the utilisation of a composite blade topology can resist the induced flapwise loading and the material strains were contained within their allowable limits. The analytical approach was demonstrated to be a quick and accurate technique to compute the composite blade strain distribution when compared to the FE model results.  相似文献   

17.
Loads from storm waves can in some cases be dimensioning for offshore wind turbine substructures. Accurate determination of nonlinear wave loads is therefore important for a safe, yet economic design. In this paper, the fully nonlinear waves, realized by a fully nonlinear potential wave solver OceanWave3D, are incorporated into coupled aero-servo-hydro-elastic simulations for a reduced set of wave-sensitive design load cases, in comparison with the widely used linear and constrained waves. The coupled aero-elastic simulations are performed for the DTU 10 MW reference wind turbine on a large monopile at 33 m water depth using the aero-elastic code HAWC2. Effect of the wave nonlinearity is investigated in terms of the ultimate sectional moments at tower bottom and monopile mudline. Higher ultimate moments, 5% at tower bottom and 13% at monopile mudline as maximum, are predicated when the nonlinear waves are used. It could be explained by the fact that the extreme nonlinear waves, that are close to the breaking limit, can induce resonant ringing-type responses, and hereby dominate the ultimate load responses. However, the constrained wave approach shows marginal difference compared to the standard linear wave approach. It can be concluded at least for the present configuration that the industry standard approaches (linear and constrained wave approach) underestimate the ultimate load responses on offshore wind turbines in severe sea states.  相似文献   

18.
In order to study the effect of typhoons on the accumulated deformation of monopile foundations for offshore wind turbines, a series of 1-g laboratory model tests with a geometrical scale of 1:100 were carried out. Through the horizontal static and cyclic loading tests of a stiff pile embedded in a medium dense sand deposit, the relationship between the accumulated rotation of the pile and the number of loading cycles under different loading conditions was obtained. The results show that the final accumulated rotation is mainly caused by the typhoon load series and is not affected by the loading sequence. Based on these results, a method is presented to predict the accumulated rotation of the monopile foundation during its service life, and a case study of a 6 MW wind turbine supported by a monopile at a water depth of 30 m in sand is conducted by using the method. The results show that the permanent accumulated rotation of the monopile throughout the design life is mainly contributed by cyclic loading induced by typhoons and the contribution of cyclic loading with small amplitudes can be ignored.  相似文献   

19.
The increasing global warming is most likely to affect the magnitude and pattern of wind at a regional level and such an effect may or not follow the trend predicted at the global scale. Regional level exercises are therefore necessary while making decisions related to engineering infrastructure. In this paper an attempt is made to know the extent of change in design as well as operational wind conditions at two offshore locations along the west coast of India. The design wind speeds with return periods of 10, 50 and 100 years derived for two 30-year time slices in the past and future are compared. In two separate exercises the past and future wind at the local level is simulated by empirical downscaling as well as by interpolation of the general circulation model (GCM) output. Both sets of past and future data are fitted to the Generalized Pareto as well as Weibull distributions using the peak over threshold method to extract long term wind speeds with a specified return. It is noticed that at the given locations the operational and design wind may undergo an increase of around 11%–14% when no downscaling is adopted and 14%–17% when the GCM data are downscaled. Although these figures may suffer from a certain level of statistical uncertainty the study points out to take a relook into the safety margins kept in the design and operation of ocean structures in the light of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号