首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Wheel–rail contact calculations are essential for simulating railway vehicle dynamic behavior. Currently, these simulations usually use the Hertz contact theory to calculate normal forces and Kalker's ‘FASTSIM’ program to evaluate tangential stresses. Since 1996, new methods called semi-Hertzian have appeared: 5 Kik, W. and Piotrowski, J. A fast approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. Paper presented at the 2nd Mini-conference on Contact Mechanics and Wear of Rail/Wheel Systems. July29–31, Budapest.  [Google Scholar] 7 Ayasse, J. B., Chollet, H. and Maupu, J. L. 2000. Paramètres caractéristiques du contact roue-rail. Rapport de Recherche INRETS n225, ISSN 0768–9756 (in French) [Google Scholar] (STRIPES). These methods attempt to estimate the non-elliptical contact patches with a discrete extension of the Hertz theory. As a continuation of 2 Ayasse, J. B and Chollet, H. 2005. Determination of the wheel–rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, 43(3) [Google Scholar], a validation of the STRIPES method for normal problem computing on three test cases is proposed in this article. The test cases do not fulfill the hypothesis required for the Hertz theory. Then, the Kalker's FASTSIM algorithm is adapted to STRIPES patch calculus to perform tangential forces computation. This adaptation is assessed using Kalker's CONTACT algorithm.  相似文献   

16.
The pantograph–catenary dynamic interaction analysis program (PantoCat) addresses the need for a dynamic analysis code able to analyse models of the complete overhead energy collecting systems that include all mechanical details of the pantographs and the complete topology and structural details of the catenary. PantoCat is a code based on the finite element method, for the catenary, and multibody dynamics methods, for the pantograph, integrated via a co-simulation procedure. A contact model based on a penalty formulation is selected to represent the pantograph–catenary interaction. PantoCat enables models of catenaries with multiple sections, including their overlap, the operation of multiple pantographs and the use of any complex loading of the catenary or pantograph mechanical elements including aerodynamic effects. The models of the pantograph and catenary are fully spatial being simulated in tangential or curved tracks, with or without irregularities and perturbations. User-friendly interfaces facilitate the construction of the models while the post-processing facilities provide all quantities of interest of the system response according to the norms and industrial requirements.  相似文献   

17.
Reservation-based intersection control for autonomous vehicles has the potential to make greater use of intersection capacity. Indeed, previous studies on the first-come-first-served (FCFS) policy (which prioritizes vehicles by order of their reservation request) have shown improvements over optimized signals. However, in certain situations, such as asymmetric intersections, FCFS easily performs worse than signals. To address this issue, we propose two new reservation policies, WEIGHTED and PHASED. WEIGHTED weights vehicle delay by signal timings, and PHASED simulates a signal but allows red phase turning movements that will not cause a collision. We test these policies on a city network and an arterial bottleneck intersection subnetwork and show that PHASED performs better than WEIGHTED in some scenarios, and vice versa. Furthermore, we show that using a combination of PHASED and WEIGHTED can perform better than using either one alone for the entire network. Results show that these policies provide effective and easily implemented alternatives to FCFS for reservations.  相似文献   

18.
SUMMARY

A numerical simulation model of the roller test stand located at Munich and loaded by a bogie is discussed including its technical structure, the governing physical equations of motion and the structure of the simulation program.

Both, the set up of the mathematical and numerical models time and the computation time of simulation runs have been considerably reduced (by a factor of 20) using formula manipulation programs.

Simulation results concerning the
  • starting behaviour of a bogie,

  • stationary limit cycle behaviour of bogies with ideal and wear profile and

  • influence of gauge changes and spring/damper modifications on limit cycle behaviour of a bogie are presented, some of which are compared with experimental results gained from test facility measurements. The simulation results are in good agreement with the experimental results and provide an experimental verification of the roller rig simulation model presented.

  相似文献   

19.
This paper presents a new active steering control system based on driving phase diagram (β fr ?δ f diagram). In order to make state variables to follow those of nominal vehicle model that was developed under no consideration of disturbance, Quadratic Programming Problem (QPP) is formulated, where time varying objective function minimizes the differences between nominal and actual parameters. The steering characteristic in active steering control system changes when the vehicle faces disturbance such as crosswind and flat tire, and driver tries to counteract it after recognizing the change. The proposed method defines a stability region on β fr ?δ f diagram. In order to make β fr and δ f remain in the stability region, a new model predictive controller is proposed. While conventional controllers are restrictive to satisfy the β fr ?δ f diagram based stability condition, the proposed controller ensures solution space and also plays a direct role to minimize the evaluation function in the constrained optimal control problem.  相似文献   

20.

Objective

With widely usage of restraint system, fatal injuries to occupants have been largely limited while non-fatal lower extremity injuries have not been effectively improved. The present study aims to investigate occupant lower extremity injuries under realistic impact environments.

Methods

A biofidelic lower extremity model, a dummy model and a car cab model were combined to set up a realistic impact environment. Three typical frontal impact groups were simulated. Occupant global lower kinematics, long bone axial force and bending moment were presented to in-depth investigate lower extremity injury mechanism and tolerance.

Results

Various overlap frontal impacts cause totally different lower extremity kinematics in the combination of structural invasion and restraint system effects. The femur fracture occurred at a small axial force of 7.57 kN combing a substantial bending moment peak of 172 Nm. Ankle joint injuries were found in 100 % and 25 % overlap impacts that present large tibial axial force and joint rotation angle.

Conclusions

Overall results indicate that a coupling threshold of femur axial force and bending moment is of rationality to predict global femur fracture. The ankle joint injury occurrence is significantly related to the coupling effects of tibia axial force and excessive self-kinematics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号