首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To study the problems associated with vibration control of train–bridge–track systems a mathematical model with the capability of representing supplementary vibrational control devices is proposed. The train system is assumed as rigid bodies supported on double-deck suspension mechanism with semi-active features. The bridge system is modeled using the modal approach. Vibration control for bridge responses is provided by tuned mass dampers. A non-classical incremental Eigen analysis is proposed to trace the system characteristics across the time. In an example, the capability of the proposed model in investigating the vibration control prospects of a bridge–train system is shown. The results indicate the effectiveness of active suspension mechanism in reducing train's body movements, particularly the pitching angle and the vertical accelerations. Accordingly, the results also verify the potential of TMD devices in reducing the bridge responses at resonance motions.  相似文献   

2.
The investigation of problems related to the interaction of train, bridge and track systems has been accelerated by the emergence of high-speed trains. Such studies are required, not only for the endurance issues regarding bridge and tracks, but to assure trains’ functionality and performance. The suspension mechanism of train systems is of prime importance in defining the functionality of high-speed trains, and accurate mathematical models of the mechanism are imperative. This paper introduces a numerical technique for an interaction study of train–bridge–track systems based on Maxwell (three-element type) modeling of the suspension mechanisms of vehicles. Track irregularity in sinusoidal form is also integrated into the mathematical model. Although the proposed technique is simple in formulation, it offers phenomenal accuracy in representing the interaction of train, track and bridge systems. In a numerical example, the dynamic behavior of a train–bridge system has been studied. Results of this analysis provide a valuable insight into the contributing roles of different parameters in this subject.  相似文献   

3.
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train–track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train–track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.  相似文献   

4.
A mathematical model of the vehicle–track interaction is developed to investigate the coupled behaviour of vehicle–track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel–rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle–track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce–pitch–roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.  相似文献   

5.
For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train–track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle–track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train–track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel–rail relation and the line geometries. And for the calculation of the wheel–rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel–rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train–track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.  相似文献   

6.
A study of a train moving along a cable-stayed bridge is performed by considering both the stationary track irregularity and a non-stationary earthquake. A detailed bridge model with 3972 degrees of freedom is established while the train model consists of two locomotives and eight carriages. The equations of motion of the coupled system are obtained by using the displacement continuous condition at the contact, with track irregularities. The earthquake is assumed to occur once the train has entered the bridge. The pseudo-excitation method is used to find the random responses of the coupled system, and the results indicate that the effect of the earthquake is much greater than that of the track irregularities. The paper discusses the influence of the intensity of the earthquake, the wave propagation velocity, the speed of the train, and the dynamic interaction between the vehicles and the bridge.  相似文献   

7.
The quarter car model has been used extensively to study the benefits of active, semi-active and passive suspensions. Despite the evident simplicity of the model, the insights obtained from this model have been found to have counterparts in half- and full-car suspension models. Among the most interesting results of the analysis of the quarter car are the relationships among certain transfer function and invariant points in the frequency response functions. These results are of great interest for the application of linear control techniques to the design of active suspensions and the optimisation of linearised passive suspensions. This paper attempts to show why some of the limitations implied by the model are less absolute than they at first seem.  相似文献   

8.
Three-dimensional models are developed for analysing the dynamic interaction that occurs between high-speed trains and bridges. The reliability and accuracy of developed models are verified by comparing the results from analysing field tests on high-speed trains. A number of train load models are proposed and their performances are compared in order to identify possible models that would reduce the computational and modelling efforts while maintaining suitable accuracy. The results show that at least 16 cars out of a 20-car train should be modelled to achieve results that are comparable to those obtained using the highly detailed 20-car model. Regarding the simplified train load model, more accurate results are obtained employing the 3D moving vehicle model for power cars, the heaviest cars of a high-speed trainset, and a moving force model for other cars, power passenger cars, and passenger cars, compared with highly detailed 20-car model.  相似文献   

9.
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train–truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.  相似文献   

10.
The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle–track interaction effectively due to its geometric deviations with a typical wavelength of 20–40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle–track structure and the wheel–rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel–rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.  相似文献   

11.
A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle–track interaction accounting for transient non-Hertzian wheel–rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang–Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.  相似文献   

12.
This paper presents dynamic contact loads at wheel–rail contact point in a three-dimensional railway vehicle–track model as well as dynamic response at vehicle–track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel–rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle–track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel–rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel–rail impact forces that arise in the wheel–rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.  相似文献   

13.
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results.  相似文献   

14.
A vertical vehicle–track coupled dynamic model, consisting of a high-speed train on a continuously supported rail, is established in the frequency-domain. The solution is obtained efficiently by use of the Green's function method, which can determine the vibration response over a wide range of frequency without any limitations due to modal truncation. Moreover, real track irregularity spectra can be used conveniently as input. The effect of the flexibility of both track and car body on the entire vehicle–track coupled dynamic response is investigated. A multi-body model of a vehicle with either rigid or flexible car body is defined running on three kinds of track: a rigid rail, a track stiffness model and a Timoshenko beam model. The results show that neglecting the track flexibility leads to an overestimation of both the contact force and the whole vehicle vibration response. The car body flexibility affects the ride quality of the vehicle and the coupling through the track and can be significant in certain frequency ranges. Finally, the effect of railpad and ballast stiffness on the vehicle–track coupled vibration is analysed, indicating that the stiffness of the railpad has an influence on the system in a higher frequency range than the ballast.  相似文献   

15.
16.
This paper presents a framework to investigate the dynamics of overall vehicle–track systems with emphasis on theoretical modelling, numerical simulation and experimental validation. A three-dimensional vehicle–track coupled dynamics model is developed in which a typical railway passenger vehicle is modelled as a 35-degree-of-freedom multi-body system. A traditional ballasted track is modelled as two parallel continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The non-ballasted slab track is modelled as two parallel continuous beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The vehicle subsystem and the track subsystem are coupled through a wheel–rail spatial coupling model that considers rail vibrations in vertical, lateral and torsional directions. Random track irregularities expressed by track spectra are considered as system excitations by means of a time–frequency transformation technique. A fast explicit integration method is applied to solve the large nonlinear equations of motion of the system in the time domain. A computer program named TTISIM is developed to predict the vertical and lateral dynamic responses of the vehicle–track coupled system. The theoretical model is validated by full-scale field experiments, including the speed-up test on the Beijing–Qinhuangdao line and the high-speed running test on the Qinhuangdao–Shenyang line. Differences in the dynamic responses analysed by the vehicle–track coupled dynamics and by the classical vehicle dynamics are ascertained in the case of vehicles passing through curved tracks.  相似文献   

17.
This work describes an analytical approach to determine what degree of accuracy is required in the definition of the rail vehicle models used for dynamic simulations. This way it would be possible to know in advance how the results of simulations may be altered due to the existence of errors in the creation of rolling stock models, whilst also identifying their critical parameters. This would make it possible to maximise the time available to enhance dynamic analysis and focus efforts on factors that are strictly necessary. In particular, the parameters related both to the track quality and to the rolling contact were considered in this study. With this aim, a sensitivity analysis was performed to assess their influence on the vehicle dynamic behaviour. To do this, 72 dynamic simulations were performed modifying, one at a time, the track quality, the wheel–rail friction coefficient and the equivalent conicity of both new and worn wheels. Three values were assigned to each parameter, and two wear states were considered for each type of wheel, one for new wheels and another one for reprofiled wheels. After processing the results of these simulations, it was concluded that all the parameters considered show very high influence, though the friction coefficient shows the highest influence. Therefore, it is recommended to undertake any future simulation job with measured track geometry and track irregularities, measured wheel profiles and normative values of the wheel–rail friction coefficient.  相似文献   

18.
This paper investigates the effects of the track geometry irregularities on the wheel–rail dynamic interactions and the rail fatigue initiation through the application of the Dang Van criterion, that supposes an elastic shakedown of the structure. The irregularities are modelled, using experimental data, as a stochastic field which is representative of the considered railway network. The tracks thus generated are introduced as the input of a railway dynamics software to characterise the stochastic contact patch and the parameters on which it depends: contact forces and wheelset–rail relative position. A variance-based global sensitivity analysis is performed on quantities of interest representative of the dynamic behaviour of the system, with respect to the stochastic geometry irregularities and for different curve radius classes and operating conditions. The estimation of the internal stresses and the fatigue index being more time-consuming than the dynamical simulations, the sensitivity analysis is performed through a metamodel, whose input parameters are the wheel–rail relative position and velocity. The coefficient of variation of the number of fatigue cycles, when the simulations are performed with random geometry irregularities, varies between 0.13 and 0.28. In a large radius curve, the most influent irregularity is the horizontal curvature, while, in a tight curve, the gauge becomes more important.  相似文献   

19.
A hybrid Spectral Element Method (SEM)–Symplectic Method(SM) method for high-efficiency computation of the high-frequency random vibrations of a high-speed vehicle–track system with the frequency-dependent dynamic properties of rail pads is presented. First, the Williams-Landel-Ferry (WLF) formula and Fractional Derivative Zener (FDZ) model were, respectively, applied for prediction and representation of the frequency-dependent dynamic properties of Vossloh 300 rail pads frequently used in China's high-speed railway. Then, the proposed hybrid SEM–SM method was used to investigate the influence of the frequency-dependent dynamic performance of Vossloh 300 rail pads on the high-frequency random vibrations of high-speed vehicle–track systems at various train speeds or different levels of rail surface roughness. The experimental results indicate that the storage stiffness and loss factors of Vossloh 300 rail pad increase with the decrease in dynamic loads or the increase in preloads within 0.1–10,000?Hz at 20°C, and basically linearly increase with frequency in a logarithmic coordinate system. The results computed by the hybrid SEM–SM method demonstrate that the frequency-dependent viscous damping of Vossloh 300 rail pads, compared with its constant viscous damping and frequency-dependent stiffness, has a much more conspicuous influence on the medium-frequency (i.e. 20–63?Hz) random vibrations of car bodies and rail fasteners, and on the mid- (i.e. 20–63?Hz) and high-frequency (i.e. 630–1250?Hz) random vibrations of bogies, wheels and rails, especially with the increase in train speeds or the deterioration of rail surface roughness. The two sensitive frequency bands can also be validated by frequency response function (FRF) analysis of the proposed infinite rail–fastener model. The mid and high frequencies influenced by the frequency-dependent viscous damping of rail pads are exactly the dominant frequencies of ground vibration acceleration and wheel rolling noise caused by high-speed railways, respectively. Even though the existing time-domain (or frequency-domain) finite track models associated with the time-domain (or frequency-domain) fractional derivative viscoelastic (FDV) models of rail pads can also be used to reach the same conclusions, the hybrid SEM–SM method in which only one element is required to compute the high-order vibration modes of infinite rail is more appropriate for high-efficiency analysis of the high-frequency random vibrations of high-speed vehicle–track systems.  相似文献   

20.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号