首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
隧道支护结构对控制围岩变形、保障施工安全至关重要。为研究支护结构参数对围岩稳定性的影响,文中以九绵高速桂溪隧道为依托,使用midas GTS建立隧道模型,针对支护结构参数对千枚板岩隧道围岩稳定性影响进行研究,研究初期支护喷射混凝土厚度、锚杆尺寸、排距和环形间距,以及管棚支护布设范围和注浆厚度等支护参数。结果表明,在一定范围内,增加喷射混凝土厚度、提高锚杆长度、减小锚杆布设排距、减小锚杆环形间距、增大管棚支护施作范围,以及合理选择注浆厚度均能提高隧道围岩稳定性。  相似文献   

2.
为更加直观地证明隧道初期支护具有单独承载能力的事实,提出直接弹性抗力法原理。直接弹性抗力法以拱(圆曲梁)和弹性地基拱(弹性地基圆曲梁)2段函数分别反映拱部支护结构脱离围岩以及侧壁支护结构压向围岩2段结构的内力及位移,能极大地简化计算过程,较为真实地反映隧道支护结构的应力状态;并结合链杆支座拱、铰支座拱模型,分别模拟实际施工的无分布锚杆影响、有分布锚杆影响但锚杆无切向力、有分布锚杆影响且锚杆有切向力3种支护应力状态,比较全面地概括隧道支护施工可能产生的应力状态,充分证明隧道初期支护具有单独承载能力的理论事实。强调"先柔后刚,先放后抗"属于概念,初期支护变形的主要原因是地基承载力不足造成沉降,锚杆锚固力和喷射混凝土早期强度等严重影响初期支护单独承载;再根据隧道支护结构各种可能的应力状态,提出对隧道初期支护结构细节设计的改进建议,如锚杆与钢架的连接、钢架之间的连接、钢架底脚的处理、锁脚管桩、型钢钢架与格栅钢架的组合结构等,通过实践证明隧道初期支护具有单独承载能力的理论。  相似文献   

3.
高含水量土质隧道新型支护形式变形与受力分析   总被引:1,自引:0,他引:1  
王超 《公路》2011,(6):234-239
鉴于高含水量土层中锚杆成孔困难、注浆效果差、自进式锚杆抗拉拔力低等缺点,提出在高含水量土质隧道中取消系统锚杆,初期支护采用"型钢拱架+喷射混凝土+钢筋网+锁脚锚管+纵向连接筋"组成的新型支护结构.为了评价这种新型支护结构的受力、变形特性,以天恒山隧道为工程依托,通过现场试验和有限元数值分析两种方法,对隧道拱部下沉、净空...  相似文献   

4.
黄土隧道网喷支护结构中锚杆的作用   总被引:14,自引:1,他引:14  
为了检验锚杆在黄土隧道中的作用,在某黄土隧道中设置有系统锚杆和无系统锚杆2个长为30 m的试验段,对隧道初期支护的净空收敛、拱部下沉、围岩压力、钢架应力、喷射混凝土应力、锚杆轴力和纵向连接筋应力进行监控量测。研究表明:2个试验段无论从变形还是受力上讲,同类数据均处于同一量级,说明系统锚杆对结构的稳定性作用不大;网络钢架、喷射混凝土、钢筋网共同组成的支护结构是合理的黄土隧道初期支护结构;取消系统锚杆,可以及时喷射混凝土,有利于围岩稳定,从而大大缩短工期;以Ⅳ级围岩为例,取消系统锚杆可降低工程造价10.6%。  相似文献   

5.
针对挤压性大变形隧道支护参数、支护时机在设计工作中难以量化的现状,在考虑围岩流变效应和支护弹塑性本构的基础上,结合数值模拟手段,对各类支护的等效支护抗力和不同等级大变形隧道分层初期支护量化参数及适应性开展研究。得出主要结论: 1)基于抗压强度控制,提出不同组合参数下的喷射混凝土和型钢拱架等效支护抗力;基于位移等效原则,提出不同直径、不同长度砂浆锚杆和不同长度预应力锚索的等效支护抗力。2)基于监控量测曲线,对考虑流变效应的围岩物理力学参数进行反演,以此计算围岩特征曲线,实现围岩变形量值、不同支护时机所需支护抗力与时间的关联。3)根据既有案例,取单边15 cm作为单层支护极限变形值,构建支护抗力曲线;基于极限变形控制原则,提出轻微大变形可选用单层初期支护+短锚杆的支护形式、中等大变形可选用2层初期支护+短锚杆的支护形式、强烈大变形可选用圆形隧道+3层初期支护+短锚杆+长锚索的支护形式的建议,并提出不同等级大变形隧道的支护时机及预留变形量建议值。4)兰渝铁路木寨岭隧道工程应用分析结果表明,采用该方法选取的支护参数是合理的。〖JP〗  相似文献   

6.
针对隧道施工期间砂质板岩、炭质千枚岩及绿泥石片岩等软弱围岩在地下水作用下发生软化、剥落、坍塌,继而引发支护变形侵限、喷射混凝土软化剥落、钢架扭曲失稳等灾害,以木寨岭公路隧道2号为依托工程,通过现场试验、监控量测等手段,分析地下水对深埋软弱围岩隧道初期支护结构失稳及破坏的影响,并提出了在地下水富集区,采用高强预应力锚索支护体系代替传统约束锚杆、环向注浆锚杆以及超前小导管注浆加固围岩的支护方法,降低了混凝土注浆压力及施工难度,避免因锚杆注浆不到位形成渗流通道而影响开挖围岩及初期支护强度,并通过采用高强预应力锚索加固措施,从而提高围岩自承能力及初期支护稳定性。  相似文献   

7.
围岩支护结构的计算与设计越来越受到业界重视,如何充分利用围岩的自稳承载能力成为研究的热点,锚杆支护作为主动支护,既允许围岩的适当变形又提高了岩体的承载能力,使围岩的稳定性得到充分发挥。文章阐述了锚杆锚固机理,介绍锚杆最新材料、锚杆结构、锚固材料及锚固耐久性方面的研究现状,重点关注实际应用中隧道锚杆支护与优化应用,并针对不同的围岩情况,提出采用合理锚杆支护能够更有效地改良围岩的应力应变特征。本研究可为同类工程提供借鉴。  相似文献   

8.
针对节理发育岩体的单洞三车道大跨公路隧道,以宁波将军山隧道为工程背景,通过离散元手段考虑岩体的非连续力学行为,分析锚杆环向布置范围、环向间距、径向长度对隧道围岩稳定性及支护结构受力的影响,以围岩变形、塑性区、锚杆轴力为评价基准,得到较优的锚杆支护方案。结果表明,Ⅴ级围岩节理发育岩体隧道拱顶超前注浆环向布置210°、间距1.0m、长度4.0m的系统锚杆支护较合理。  相似文献   

9.
通过对窑沟隧道周边收敛、拱顶下沉、围岩压力、钢拱架内力、喷射混凝土应力和锚杆轴力进行监控量测,了解隧道开挖过程中马兰黄土隧道围岩变形特性及支护结构受力特性。结果表明:施工过程中拱部沉降的量值远大于净空收敛的量值;围岩压力分布不均匀;钢架支护在隧道支护体系中起着非常重大的作用;拱部系统锚杆对结构的稳定性作用不大;水对拱顶沉降的影响非常严重。  相似文献   

10.
《中外公路》2021,41(3):226-229
为了分析水平砂泥岩隧道锚杆支护效果,以段家坪隧道为例,通过数值模拟和现场监测,对隧道拱顶沉降、锚杆轴力和初期支护与围岩接触压力进行研究。结果表明:锚杆长度达到3 m,锚杆间距达到1.5 m后,继续增加锚杆长度和减少锚杆间距对于隧道拱顶沉降的控制作用不再明显;隧道拱部锚杆轴力较大,隧道拱腰和拱脚处锚杆受力较小;随着水平砂泥岩隧道围岩强度的降低,拱部锚杆轴力不断增大。围岩强度越低,锚杆能够更好发挥控制围岩变形的作用。  相似文献   

11.
刘江  王军  徐腾辉 《隧道建设》2018,38(Z2):324-329
为了解决软弱围岩隧道机械化开挖后快速支护的难题,采用三臂凿岩台车、风动扳手等配套机具施作涨壳式预应力中空锚杆对围岩进行快速支护。通过在郑万高铁高家坪隧道软弱围岩段大断面机械化施工条件下涨壳式预应力中空锚杆的应用研究,总结出涨壳式预应力中空锚杆工作原理、工艺流程,通过注浆试验对比分析,提出适合的隧道锚杆注浆比例,并结合锚杆轴力监测和地层位移监测结果,表明该锚杆具有快速约束围岩、形成应力拱、减少围岩松动圈、保证围岩稳定的优势,能够有效保障隧道机械化施工的安全,并提高隧道机械化施工效率。  相似文献   

12.
苏石 《路基工程》2012,(2):95-98
依托“兰渝客专”胡麻岭隧道工程,研究不同岩层产状(倾角)围岩稳定性,以及支护结构力学响应。结果表明:节理面极大降低隧道围岩稳定性,节理面物理力学性质是隧道围岩失稳的控制性因素;竖向节理隧道失稳以冒顶、坍方为主;当岩层为水平时,其支护结构受力分布合理;倾斜产状节理岩体支护结构受力呈现明显偏压现象;隧道边墙相对稳定,围岩锚杆加固有效长度3 m,拱顶要提高设计参数,有效促进“拱效应”形成,确保隧道稳定性。  相似文献   

13.
剧仲林 《隧道建设》2022,42(Z1):28-39
当前软岩隧道初期支护因沉降变形量大而造成的成本消耗高问题较突出,初期支护底脚作用力与锁脚锚杆抗力不平衡是隧道初期支护沉降的主要原因,其中建立支护底脚与锁脚锚杆之间力的平衡关系是控制隧道初期支护沉降变形的重要前提。以弹性地基梁柱原理和摩擦桩原理来计算分析锁脚锚杆的内力和位移及其与地基的反力关系,以此确定锁脚锚杆的承载能力;通过分析锁脚锚杆对支护结构的柔度,确定其与支护结构的相互影响,进而建立考虑锁脚锚杆对支护结构底脚影响的支护结构力学计算模型,计算其作用于锁脚锚杆端上的作用力作为锁脚锚杆的设计依据;按照上述原理,分析了Ⅴ级围岩当前流行的42锁脚锚管的不足,并示例计算分析了108锁脚锚管的承载能力;最后以Ⅵ级围岩风积砂隧道施工的实例来说明“分布式”加强锁脚锚管以及锁脚锚桩控制支护沉降变形的显著效果验证技术的可行性;结论认为软岩隧道初期支护可按照“荷载—结构”原理确定围岩与支护、支护与锁脚锚杆之间的作用力与反作用力关系,达成支护结构之间力的平衡稳定以实现控制支护沉降的目的。  相似文献   

14.
依托吉林省鹤大高速公路回头沟隧道工程,运用有限元数值模拟,从锚杆长度、环向间距、喷混凝土厚度等方面分析隧道初期支护结构参数对围岩稳定性的影响规律。在对称和非对称设计时,综合考虑锚杆轴力、洞周位移以及衬砌的结构安全系数等方面对回头沟隧道浅埋偏压段Ⅴ级围岩的支护结构给出优化设计建议。  相似文献   

15.
以一复杂地质条件下隧道Ⅳ级围岩为例,利用有限元程序进行数值分析,模拟台阶法和环形法的施工过程,得到初期支护后围岩与支护结构的变形和应力特征。结果表明:环形法较台阶法的围岩应力与变形相对较小。建议施工中增加钢支撑密度或增大钢支撑横截面,提高支护的承载能力,使锚杆、钢筋网、钢支撑和混凝土形成一体的初期支护,与围岩共同承载,以确保隧道施工安全。  相似文献   

16.
鉴于土质隧道施工方法、支护时机、施工工艺等对系统锚杆支护效果的影响,及高含水量土层中锚杆成孔困难、注浆效果差、抗拉拔力低等缺点,提出在高含水量土质隧道中不设系统锚杆,初期支护采用“型钢拱架+喷射混凝土+钢筋网+锁脚锚管+纵向连接筋”组成的新型支护结构。为了评价这种新型支护结构的受力、变形特性以及衬砌结构的可靠性,在天恒山隧道Ⅵ级围岩段设置了两个监测断面,对隧道初期支护的拱部下沉、净空收敛、围岩压力、喷射混凝土应力、型钢拱架应力、纵向连接筋应力等进行监控量测。监测结果表明,不设系统锚杆时,隧道支护结构的变形和受力均在允许范围之内,初期支护工作状态良好。不设系统锚杆,可缩短工期和降低工程造价,具有着显著的经济价值和社会效益。  相似文献   

17.
通过对实测数据分析可知,米拉山隧道凝灰岩遇水软化对围岩的变形影响很显著,为此,采用数值模拟方法对米拉山隧道凝灰岩开挖与支护力学特性进行了研究,获得了在不同时期围岩遇水软化和各分步开挖阶段围岩的位移、应力场变化规律,支护衬砌结构的变形、应力分布及内力分布情况。围岩遇水软化后,由于隧道的变形,锚杆与围岩发生相对滑动,锚杆嵌入隧道围岩,隧道变形大的部位也是锚杆受力大的部位,同时该部位锚杆与围岩的相对滑动也最大。隧道下台阶一次性开挖后施作的锚杆受力左右成对称分布,下台阶左右分步开挖施作的锚杆受力成不对称分布,后面施作的锚杆受力小于前面施作的锚杆受力。隧道围岩遇水软化后初期支护发生整体下沉,沉降量由拱脚向拱肩逐渐增大,拱顶沉降相对小于拱肩沉降;通过对不同阶段隧道围岩遇水软化下二次衬砌和仰拱的受力分析,发现在围岩软化的情况下进行隧道的开挖时,下台阶一次性开挖、仰拱一次性施作对隧道的安全性和稳定性方面都有提高,并得出不同阶段隧道围岩遇水软化隧道在后期运营阶段均处于安全状态。  相似文献   

18.
研究支护状态下围岩变形范围及其位移量将为合理确定软岩隧道开挖的预留变形量及其支护方案提供重要的理论依据。通过将隧道围岩简化为理想弹塑性介质,在围岩中布设全长锚固锚杆。基于锚杆与围岩的协调变形原理,建立杆体与其周围岩体相互作用的力学模型,分析锚杆表面摩阻力及轴力的分布规律,并根据杆体的静力平衡条件,推导出杆体与岩体相对位移为0的中性点位置及其最大轴力值,讨论初期支护条件下隧道围岩的塑性区及破裂区的厚度计算公式及其影响因素;综合考虑隧道表面围岩变形过程中的塑性位移和破裂区岩体的碎胀变形位移,提出隧道表面围岩的位移公式及预留间隙柔模支护技术,进而定量分析榴桐寨软岩隧道的围岩位移及其预留变形量。结果表明:通过锚杆轴力可以反演分析隧道围岩的变形范围,确定围岩稳定后的最终位移量;柔模支护结构能够大量吸收大变形软岩的变形能,且具有适当的刚度抵抗围岩的有害变形,研究成果可为合理设计软岩隧道的开挖及支护方案提供新的思路。  相似文献   

19.
公路隧道穿越水平泥岩砂岩互层施工过程中支护体系力学特性较为复杂,通过开展大梁峁特长公路隧道水平泥岩砂岩互层段支护体系现场试验,研究水平泥砂岩互层段隧道初期支护中的锚杆轴力、围岩压力,钢架应力、混凝土应力及支护变形,二次衬砌中接触压力和混凝土受力特征。分析表明:拱部锚杆作用明显,边墙锚杆受力较小,建议锚杆由拱部160°减少至拱部120°,同时适当增加拱部锚杆;围岩压力在断面开挖后7d时间内已基本达到最大围岩压力的80%左右,说明在该种岩层中隧道开挖后围岩压力释放较快;水平泥岩砂岩互层关键控制点在拱部位置,边墙部位的支护结构无论从受力还是变形来说均较小;研究成果可为水平层状岩层隧道及类似工程的修建提供参考。  相似文献   

20.
黄土隧道洞口段支护结构的力学特性分析   总被引:4,自引:0,他引:4  
为了解浅埋偏压黄土隧道洞口段支护结构的受力状况,对刘家坪2^#隧道洞口段围岩压力、钢架应力、喷射混凝土应力、纵向连接筋应力、锚杆轴力及拱部下沉进行施工监测,并采用有限元法对隧道支护结构进行计算分析。结果表明:在浅埋偏压条件下,黄土隧道拱部发生了平面偏移,拱顶下沉量大于净空收敛量;围岩压力分布呈不对称猫耳状;钢拱架左侧轴力大于右侧轴力,总体受力很大,在支护体系中作用很明显;拱部和边墙喷射混凝土处于受压状态,而底部多为拉应力;拱部系统锚杆对结构的稳定性作用不大,而锁脚锚杆对结构的稳定性有一定的作用;纵向连接筋受力非常大,对隧道整体的稳定性很有利;应取消黄土隧道洞口段系统锚杆,采用由钢拱架、钢筋网、锁脚锚杆、喷射混凝土、纵向连接筋组合形成的初期支护结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号