共查询到20条相似文献,搜索用时 15 毫秒
1.
文章尝试将两种独立的灰色模型预测方法,GM(1,1)模型与Verhulst模型结合起来考虑,形成一种新的灰色组合预测模型方法.为灰色模型应用于近期、中长期的预测提供了一个新的解决方案。 相似文献
2.
3.
根据连云港港口货物吞吐量的统计资料,应用基于GM(1,1)改进的DGM模型来预测港口货物吞吐量。在计算、分析基础上得出所建立的模型预测效果较GM(1,1)和DGM模型预测精度高,与实际情况更为接近。 相似文献
4.
5.
6.
基于灰色系统理论,使用海军舰船维修费用历史数据建立初值修正的GM(1,1)模型,利用少量数据中的显信息和隐信息,避免复杂的相关关系,克服了原始数据的离散性,得到较高精度的拟合效果,并对海军舰船维修费用进行短期预测。将预测结果加入等维信息模型,对未来费用支出进行动态预测。结果表明:其精度优于传统模型。 相似文献
7.
8.
港口吞吐量的预测是港口规划过程中最为基础也最为关键的一步,只有对港口吞吐量做出准确、稳定的预测,才能做出科学合理的港口发展规划。由于内河港吞吐量历史数据有限,文中采用GM(1,1)和Verhulst模型的最优组合模型对港口吞吐量进行预测。该组合模型充分利用GM(1,1)模型“少数据,短期预测准确”的优点,又针对GM(1,1)预测量的无限增大趋势,引入了Verhulst模型进行组合修正,进而提高预测值的准确、稳健性。 相似文献
9.
10.
灰色系统模型在内河港口吞吐量预测中的应用 总被引:1,自引:1,他引:1
根据淮南港吞吐量实际调查资料,选择灰色系统理论对其进行吞吐预测研究,结果表明,对不同的预测时期应采用不同的灰色系统预测模型。对于短期预测,采用GM(1,1)模型与Verhulst模型的组合模型;对于长期预测,采用Verhulst模型并用GM(1,1)模型对其残差进行修正。实例验证以上两种模型是可行性的。 相似文献
11.
为进一步提高货物吞吐量预测准确性,提出基于NeuralProphet时间序列模型与长短期记忆(LSTM)神经网络的组合预测模型。首先利用NeuralProphet模型对港口货物吞吐量数据进行训练得到预测值并计算残差序列,然后对残差数据建立LSTM神经网络模型进行预报修正,重构得到最终的预测值。以上海港、厦门港的月度货物吞吐量数据为样本展开试验,结果表明,该模型能够有效地解决数据异常波动造成的预测结果误差大、预测效果不稳定等问题;相比于传统单一模型与LSTM-支持向量机(SVM)、Bi-LSTM等组合模型,NeuralProphet-LSTM模型预测精度更高,可帮助港航企业及时调整规划决策与经营策略。 相似文献
12.
通过多元回归、时间序列模型以及灰色预测模型,对青岛市的近20 a对外贸易总额和吞吐量进行分析预测。充分考虑与港口货物吞吐量相关的六种因素指标,构建多元回归方程,运用Eviews软件对各因素的数据进行处理,建立ARIMA模型并对提取的三个指标进行预测,从而对回归模型中的对外贸易进出口总额(因变量)进行总预测,以了解青岛港的运输需求量;采用灰色预测模型并运用MATLAB软件对青岛港的货物吞吐量预测,分析青岛港港口的运输承载力。运用数学模型对港口吞吐量进行科学的评价和预测,能为青岛港制定中长期发展战略提供基本依据,对港口的持续发展的具有一定的现实意义。 相似文献
13.
14.
介绍了长江三角洲港口群的范围,然后根据国家有关部门的规划,应用多种预测法,对上海港、江苏、浙江等主要港口货物吞吐量进行预测。 相似文献
15.
利用改进的灰色模型预测港口集装箱吞吐量 总被引:5,自引:0,他引:5
本文介绍了灰色模型GM(1,1)及改进灰色模型(背景值优化),同时对残差校正进行优化,并用实例证明在港口吞吐量预测方面,改进灰色模型比原始灰色模型误差更小,精度更高。 相似文献
16.
17.
灰色预测模型在港口集装箱吞吐量预测中的应用 总被引:5,自引:0,他引:5
1 引言 多年来我国集装箱运输持续快速地发展,水路运输方面,已在沿海形成八大干线港口,集装箱运输正逐步向中西部延伸。随着未来经济的发展。港口还须进一步提高吞吐能力,港口集装箱吞吐量需求预测将越发重要。 相似文献
18.
港口作为国内国际贸易的重要枢纽,在新时代区域经济发展中具有重要的战略地位。为提高港口货物吞吐量的预测精度,使用差分法、灰狼优化(GWO)算法和Elman神经网络模型对2010―2019年青岛港货物吞吐量进行了训练与预测。基于所收集到的时间序列数据,将其作为样本数据输入Elman神经网络模型进行训练与测试;在训练过程中,引入灰狼优化(GWO)算法来优化Elman神经网络的权重(w)和神经元阈值(b);将GWO-Elman组合模型应用于青岛港货物吞吐量预测的实证研究中。结果证明:GWO-Elman算法模型相较于传统Elman神经网络模型,在预测货物吞吐量时有着更高的收敛速度与预测精度,这为港口货物吞吐量的预测提供了一种新的计算方法。 相似文献
19.
20.
周期性残差修正GM(1.1)在海事直接经济损失预测中的应用 总被引:2,自引:0,他引:2
熊振南 《上海海运学院学报》2001,22(1):67-70
通过将建立的海事直接经济损失预测模型在某港口的运用检验,表明该模型精度较高,对海事直接经济损失的预测应用良好。 相似文献