首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Nowadays, optimization of ship energy efficiency attracts increasing attention in order to meet the requirement for energy conservation and emission reduction. Ship operation energy efficiency is significantly influenced by environmental factors such as wind speed and direction, water speed and depth. Owing to inherent time-variety and uncertainty associated with these various factors, it is very difficult to determine optimal sailing speeds accurately for different legs of the whole route using traditional static optimization methods, especially when the weather conditions change frequently over the length of a ship route. Therefore, in this paper, a novel dynamic optimization method adopting the model predictive control (MPC) strategy is proposed to optimize ship energy efficiency accounting for these time-varying environmental factors. Firstly, the dynamic optimization model of ship energy efficiency considering time-varying environmental factors and the nonlinear system model of ship energy efficiency are established. On this basis, the control algorithm and controller for the dynamic optimization of ship energy efficiency (DOSEE) are designed. Finally, a case study is carried out to demonstrate the validity of this optimization method. The results indicate that the optimal sailing speeds at different time steps could be determined through the dynamic optimization method. This method can improve ship energy efficiency and reduce CO2 emissions effectively.  相似文献   

2.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.  相似文献   

3.
文章分析了我国典型航线典型船舶排放特征,以船舶自动识别系统数据为基础,收集整理所选研究船舶排放参数,结合船舶实际航行资料,采用动力法估算了秦皇岛港—广州港航线某散货船一个航行周期的排放清单,并分析了靠港、停泊、港内机动、巡航4个船舶状态下的排放特征,绘制了2 km×2 km分辨率的空间排放特征图。结果表明,该典型航线上典型散货船舶一个航行周期排放的SOx、NOx、PM10、PM2.5总量分别为18.88吨、30.87吨、1.85吨和1.69吨。排放源分析表明从在船舶的主机、辅机和锅炉3种排放源中,主机是主要排放源。航行状态上巡航工况排放量最大;船舶排放污染物的空间分析表明,船舶在进出港口区域是污染物排放最密集的区域。  相似文献   

4.
This paper presents the first analysis on how financial savings arising from energy efficient ships are allocated between owners and those hiring the ships. This as an important undertaking as allocation of financial savings is expected to have an impact on the incentives faced by ship owners to invest in more energy efficient vessels. We focus on the dry bulk Panamax segment as it contributes to around 50 Mt (5%) of total CO2 emissions from shipping in 2007 and therefore its importance in terms of environmental impact should not be neglected. The time charter market represents a classical example of the principal–agent problem similar to the tenant–landlord problem in the buildings sector. We discovered that on average only 40% of the financial savings delivered by energy efficiency accrue to ship owner for the period 2008–2012. The finding that only part of the savings are recouped by shipowners affecting their incentives towards energy efficiency could consequently have implications on the type of emission reduction policies opted at both, global and regional levels.  相似文献   

5.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements.  相似文献   

6.
Service reliability of public transportation (PT) systems is a dominant ingredient in what is perceived as the PT image. Unreliable service increases the uncertainties of simultaneous arrivals of vehicles at a transfer point. Implementing proper control actions leads to preventing missed transfers, one of the undesirable features of PT service and a major contributor to a negative image. The present work focuses on performance measurements of a PT system offering direct transfers on multi-legged trips. The method developed evaluates and improves system performance by applying selected operational tactics in real-time scenarios. In order to investigate the efficiency level of the PT system, five types of vehicle positional situations with reference to a transfer point are considered: considerably ahead of schedule, ahead of schedule, on schedule, behind schedule, and considerably behind schedule. Each situation contributes differently to the degree of system performance. The optimization framework developed results in selected operational tactics to attain the maximum number of direct (without waiting) transfers and minimize total passenger travel time. The implementation of the concept is performed in two steps: optimization and simulation. The optimization process searches for the best operational tactics, using the states of the five vehicle-position types, and the simulation serves to validate the optimal results under a stochastic framework using the concept of a multi-agent system. A case study of Auckland, New Zealand, is described for assessing the methodology developed. Results showed a 58% improvement in the system performance index compared to no-tactic operations.  相似文献   

7.
8.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

9.
近年来,国家陆续出台了关于长江生态保护的相关文件。随着电力推进技术在节能减排方面的优势显现,常规动力渡船存在的问题显而易见,如较长传动轴增加了能量损耗,降低了能源效率;柴油机的响应较慢,影响船舶的机动性;柴油机的燃烧不充分导致燃油的过多消耗,以及柴油机直驱渡船的动力推进装置占据了机舱的大部分空间。本文结合电力推进渡船的应用情况,针对上述常规推进渡船的缺点,对船舶动力系统进行了改进,采用全回转电力推进取代原先柴油机直驱,电站采用高压共轨电喷式柴油机带动发电机发电,经整流实现直流组网后,统一为全船提供动力和日常用电。  相似文献   

10.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

11.
Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach.  相似文献   

12.
To identify key factors of transport CO2 emissions and determine effective policies for emission reductions in fast-growing cities, this study establishes transport CO2 emission models, quantifying the influences of polycentricity and satellite cities and re-examining the effects of per capita GDP and metro service. Based on the model results, we forecast future residents’ urban transport CO2 emissions under several scenarios of different urban and transport policies and new energy technologies. We find nonlinear quadratic growth relationship between commuting CO2 emissions and per capita GDP, and the elasticities of household and individual commuting CO2 emission to per capita GDP are 1.90% and 1.45%, respectively. Developing job-housing balanced satellite cities and self-contained polycentric city can greatly decrease emissions from high emitters and can contribute to about 51–82% of the emission reductions by 2050 compared with the scenario of business as usual (BAU). Promotion of electric vehicles, electric public buses, metros, and improvement of traditional energy efficiency contributes to about 48–57% of the emission reductions by 2050 compared with the BAU. When these policies and technologies are combined, about 90% of the emissions could be reduced by 2050 compared with the BAU, and the emissions will be about 1.2–4.9 times of the present. The findings suggest that fostering polycentric urban form and job-housing balanced satellite cities is the key step for future transport CO2 emission reductions. Metro network promotion, energy efficiency improvement, and new energy type applications can also be effective in emission reductions.  相似文献   

13.
Winter road maintenance (WRM) has been shown to have significant benefits of improving road safety and reducing traffic delay caused by adverse weather conditions. It has also been suggested that WRM is also beneficial in terms of reducing vehicular air emissions and fuel consumptions because snow and ice on road surface often cause the drivers to reduce their vehicle speeds or to switch to high gears, thus decreasing fuel combustion efficiency. However, there has been very limited information about the underlying relationship, which is important for quantifying this particular benefit of a winter road maintenance program. This research is focused on establishing a quantitative relationship between winter road surface conditions and vehicular air emissions. Speed distribution models are developed for the selected Ontario highways using data from 22 road sites across the province of Ontario, Canada. The vehicular air emissions under different road surface conditions are calculated by coupling the speed models with the engine emission models integrated in the emission estimation model - MOVES. It was found that, on the average, a 10% improvement in road surface conditions could result in approximately 0.6–2% reduction in air emissions. Application of the proposed methodology is demonstrated through a case study to analyse the air emission and energy consumption effects under specific weather events.  相似文献   

14.
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

15.
Currently, the shipping industry is facing a great challenge of reducing emissions. Reducing ship speeds will reduce the emissions in the immediate future with no additional infrastructure. However, a detailed investigation is required to verify the claim that a 10% speed reduction would lead to 19% fuel savings (Faber et al., 2012).This paper investigates fuel savings due to speed reduction using detailed modeling of ship performance. Three container ships, two bulk carriers, and one tanker, representative of the shipping fleet, have been designed. Voyages have been simulated by modeling calm water resistance, wave resistance, propulsion efficiency, and engine limits. Six ships have been simulated in various weather conditions at different speeds. Potential fuel savings have been estimated for a range of speed reductions in realistic weather.It is concluded that the common assumption of cubic speed-power relation can cause a significant error in the estimation of bunker consumption. Simulations in different seasons have revealed that fuel savings due to speed reduction are highly weather dependent. Therefore, a simple way to include the effect of weather in shipping transport models has been proposed.Speed reduction can lead to an increase in the number of ships to fulfill the transport demand. Therefore, the emission reduction potential of speed reduction strategy, after accounting for the additional ships, has been studied. Surprisingly, when the speed is reduced by 30%, fuel savings vary from 2% to 45% depending on ship type, size and weather conditions. Fuel savings further reduce when the auxiliary engines are considered.  相似文献   

16.
How to accurately calculate ship exhaust emissions has become urgent needs. In this paper, multi-source maritime information is integrated to estimate ship exhaust emissions under ocean environment. Influences of wind, wave and current on ship speed are firstly analyzed and mathematically modeled. Based on the influences, ocean environment information and ship trajectories are integrated to identify ship activities exactly. After that, ship activity based calculation method is present to obtain exhaust emissions from ship in various activities. Contribution ratios of different ship type and ship activities have been further discussed. In a case study of Ningbo-Zhoushan port in China, greenhouse gas (CO2, CO, SOx, NOx and PM) emissions from ships in 2014 calculated by the proposed method are 8.72 × 105 ton, 2.07 × 103 ton, 1.47 × 104 ton, 2.60 × 104 ton and 1.40 × 103 ton respectively. The maximum error is under 10%. Experimental results illustrate that the proposed method can produce more accurate ship exhaust emissions than traditional method under ocean environment conditions.  相似文献   

17.
The purpose of this paper is to clarify some important issues as regards ship speed optimization at the operational level and develop models that optimize ship speed for a spectrum of routing scenarios in a single ship setting. The paper’s main contribution is the incorporation of those fundamental parameters and other considerations that weigh heavily in a ship owner’s or charterer’s speed decision and in his routing decision, wherever relevant. Various examples are given so as to illustrate the properties of the optimal solution and the various trade-offs that are involved.  相似文献   

18.
This paper looks at the energy consumption and green house gas emissions of inland river shipping, and compares them with the performance of seagoing ships. The analysis is based on a case study of container shipping on the Yangtze River, China. Data were collected under both calm water and real navigation conditions, and energy efficiency operation indices under these conditions are calculated and analyzed. We find that the navigation environment can influence significantly the operational energy efficiency of inland river ships.  相似文献   

19.
Various regulations are imposed on shipping to increase energy efficiency and reduce environmental impacts. Alternative fuels and power systems are among the solutions for compliance with these regulations. The power system of a ship may not operate optimally because of the diversity of the operational profile during its lifetime. This article uses an activity-based approach and big data from the Automatic Identification System (AIS) to study the operational profiles of eight ship types operating in Norwegian waters around mainland Norway in 2016. The aim is to identify ship types that can benefit from electric and hybrid propulsion through analysis of their operational profiles. Close to shore, the operational profiles of various ship types are similar, and all ships spend a great proportion of their time with lower loads. As the distance from shore increases, the operational profiles of various ship types follow distinct trends. Among the considered ship types, reefers spend more operational time close to the diesel engine design condition. On the other hand, offshore and passenger ships show the most dynamic operational profiles and spend a large percentage of their operational time with a partial load, away from diesel engine design conditions. Such ships can benefit from hybridisation, diesel-electric propulsion, and other electric concepts, such as batteries and fuel cells. Another option is to downsize diesel engines for better operation while fuel cells and batteries supply peak and partial loads. Operational profiles are plotted and details of the approach are presented in the article.  相似文献   

20.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号