共查询到20条相似文献,搜索用时 15 毫秒
2.
Nowadays, optimization of ship energy efficiency attracts increasing attention in order to meet the requirement for energy conservation and emission reduction. Ship operation energy efficiency is significantly influenced by environmental factors such as wind speed and direction, water speed and depth. Owing to inherent time-variety and uncertainty associated with these various factors, it is very difficult to determine optimal sailing speeds accurately for different legs of the whole route using traditional static optimization methods, especially when the weather conditions change frequently over the length of a ship route. Therefore, in this paper, a novel dynamic optimization method adopting the model predictive control (MPC) strategy is proposed to optimize ship energy efficiency accounting for these time-varying environmental factors. Firstly, the dynamic optimization model of ship energy efficiency considering time-varying environmental factors and the nonlinear system model of ship energy efficiency are established. On this basis, the control algorithm and controller for the dynamic optimization of ship energy efficiency (DOSEE) are designed. Finally, a case study is carried out to demonstrate the validity of this optimization method. The results indicate that the optimal sailing speeds at different time steps could be determined through the dynamic optimization method. This method can improve ship energy efficiency and reduce CO2 emissions effectively. 相似文献
3.
This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer’s choice of vehicle size. A vehicle’s size is measured by its “footprint”, the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size, thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle’s footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles. 相似文献
4.
This study aims (i) to analyze theoretical properties of a recently proposed describing-function (DF) based approach (Li and Ouyang, 2011; Li et al., 2012) for traffic oscillation quantification, (ii) to adapt it for estimating fuel consumption and emission from traffic oscillation and (iii) to explore vehicle control strategies of smoothing traffic with advanced technologies. The DF approach was developed to predict traffic oscillation propagation across a platoon of vehicles following each other by a nonlinear car-following law with only the leading vehicle’s input. We first simplify the DF approach and prove a set of properties (e.g., existence and uniqueness of its solution) that assure its prediction is always consistent with observed traffic oscillation patterns. Then we integrate the DF approach with existing estimation models of fuel consumption and emission to analytically predict environmental impacts (i.e., unit-distance fuel consumption and emission) from traffic oscillation. The prediction results by the DF approach are validated with both computer simulation and field measurements. Further, we explore how to utilize advantageous features of emerging sensing, communication and control technologies, such as fast response and information sharing, to smooth traffic oscillation and reduce its environmental impacts. We extend the studied car-following law to incorporate these features and apply the DF approach to demonstrate how these features can help dampen the growth of oscillation and environmental impact measurements. For information sharing, we convert the corresponding extended car-following law into a new fixed point problem and propose a simple bisecting based algorithm to efficiently solve it. Numerical experiments show that these new car-following control strategies can effectively suppress development of oscillation amplitude and consequently mitigate fuel consumption and emission. 相似文献
5.
Ensuring a fleet of green aircraft is a basic step in mitigating aviation pollution issues that are expected to be worsen in the coming years due to rapid air traffic growth. This study proposed a novel methodology in green fleet planning in which both profit and green performance of airline are considered simultaneously and explicitly. To do this, a Green Fleet Index (GFI) is derived as an indicator to quantify the green performance of airline’s fleet. It measures the degree of airline compliance with a standard requirement in terms of emission, noise, and fuel consumption. A bi-objective dynamic programming model is then formulated to find optimal aircraft acquisition (lease or purchase) decision by minimizing GFI and maximizing profit. Several interesting results are obtained: (1) considering environmental issue as secondary objective yields a greener fleet; (2) airline’s profit is affected, but could be recovered from environmental cost savings; (3) increasing load factor is an effective operational improvement strategy to enhance airline’s green performance and raise profit level. It is anticipated that the framework developed in this study could assist airlines to make a smart decision when considering the need to be green. 相似文献
6.
After having implemented numerous regulations, e.g., coercive policies on vehicle use and purchase, it is becoming increasingly difficult to find further potential to control vehicle emissions in Beijing, as the air quality is still poor. This research provides a different approach for policy-makers to reduce vehicle emissions by managing demand. We found that parents ferrying their children to and from school is an important but long-neglected contributor to traffic congestion and vehicle emissions. This phenomenon is very common in China because of the social culture. In this research, parallel tests during both the school season and the non-school season were adopted, and emissions in both seasons were calculated based on travel demand and emission models. The results revealed that emissions factors (in g/km) for criteria pollutants and CO2 increased by over 10% during rush hours during the school season due to traffic condition deterioration compared with non-school season. Daily HC, CO, NOx, PM and CO2 emissions from the passenger car fleet were 8.3%, 7.8%, 6.4%, 6.3% and 6.5% higher compared with those during the non-school season, respectively. These differences are greater than the total vehicular emission reduction by other control measures in 2014 in Beijing. For policy makers, providing safe and efficient ways to ferry children would be a useful and harmonious strategy for future vehicle emission control. 相似文献
7.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements. 相似文献
8.
John K. Stanley David A. Hensher 《Transportation Research Part A: Policy and Practice》2011,45(10):1020-1030
Transport is Australia’s third largest and second fastest growing source of greenhouse gas (GHG) emissions. The road transport sector makes up 88% of total transport emissions and the projected emissions increase from 1990 to 2020 is 64%. Achieving prospective emission reduction targets will pose major challenges for the road transport sector. This paper investigates two targets for reducing Australian road transport greenhouse gas emissions, and what they might mean for the sector: emissions in 2020 being 20% below 2000 levels; and emissions in 2050 being 80% below 2000 levels. Six ways in which emissions might be reduced to achieve these targets are considered. The analysis suggests that major behavioural and technological changes will be required to deliver significant emission reductions, with very substantial reductions in vehicle emission intensity being absolutely vital to making major inroads in road transport GHG emissions. 相似文献
9.
10.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles. 相似文献
11.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement. 相似文献
12.
To control SOx, NOx and particulate matter emission from ships, including cruise ships, emission control areas (ECAs) have been defined by the International Maritime Organization (IMO), which influences cruise planning. This paper investigates a mixed integer programming model to reschedule voyage plans by optimizing speeds, sailing patterns and ports-of-call sequences, hence reducing fuel costs. A tabu search based solution method is developed to solve the model. Computational tests on real-world data of cruise lines are conducted in order to explore the effects of ECA regulations on cruise shipping. The results show that the proposed model can save fuel costs under ECA regulations, and the designed solution method is efficient. 相似文献
13.
This paper is the first in a series of reports presenting a framework for the hierarchical design of feedback controllers for traffic lights in urban networks. The goal of the research is to develop an easy to understand methodology for designing model based feedback controllers that use the current state estimate in order to select the next switching times of traffic lights. In this paper we introduce an extension of the cell transmission model that describes with sufficient accuracy the major causes of delay for urban traffic. We show that this model is computationally fast enough such that it can be used in a model predictive controller that decides for each intersection, taking into account the vehicle density as estimated along all links connected to the intersection, what switching time minimizes the local delay for all vehicles over a prediction horizon of a few minutes. The implementation of this local MPC only requires local online measurements and local model information (unlike the coordinated MPC, to be introduced in the next paper in this series, that takes into account interactions between neighbouring intersections). We study the performance of the proposed local MPC via simulation on a simple 4 by 4 Manhattan grid, comparing its delay with an efficiently tuned pretimed control for the traffic lights, and with traffic lights controlled according to the max pressure rule. These simulations show that the proposed local MPC controller achieves a significant reduction in delay for various traffic conditions. 相似文献
14.
A widespread deployment of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management efficiency because of the novel possibilities of using VACS both as sensors and as actuators, as well as of a variety of new communications channels (vehicle-to-vehicles, vehicle-to-infrastructure) and related opportunities. To achieve this traffic flow efficiency, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a hierarchical model predictive control framework that can be used for the coordinated and integrated control of a motorway system, considering that an amount of vehicles are equipped with specific VACS. The concept employs and exploits the synergistic (integrated) action of a number of old and new control measures, including ramp metering, vehicle speed control, and lane changing control at a macroscopic level. The effectiveness and the computational feasibility of the proposed approach are demonstrated via microscopic simulation for a variety of penetration rates of equipped vehicles. 相似文献
15.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels. 相似文献
16.
Fully automated vehicles could have a significant share of the road network traffic in the near future. Several commercial vehicles with full-range Adaptive Cruise Control (ACC) systems or semi-autonomous functionalities are already available on the market. Many research studies aim at leveraging the potential of automated driving in order to improve the fuel efficiency of vehicles. However, in the vast majority of those, fuel efficiency is isolated to the driving dynamics between a single follower-leader pair, hence overlooking the complex nature of traffic. Consequently fuel efficiency and the efficient use of the roadway capacity are framed as conflicting objectives, leading to fuel-economy control models that adopt highly conservative driving styles.This formulation of the problem could be seen as a user-optimal approach, where in spite of delivering savings for individual vehicles, there is the side-effect of the deterioration of traffic flow. An important point that is overlooked is that the inefficient use of roadway capacity gives rise to congested traffic and traffic breakdowns, which in return increases energy costs within the system. The optimisation methods used in these studies entail high computational costs and, therefore, impose a strict constraint on the scope of problem.In this study, the use of car-following models and the limitation of the search space of optimal strategies to the parameter space of these is proposed. The proposed framework enables performing much more comprehensive optimisations and conducting more extensive tests on the collective impacts of fuel-economy driving strategies. The results show that, as conjectured, a “short-sighted” user-optimal approach is unable to deliver overall fuel efficiency. Conversely, a system-optimal formulation for fuel efficient driving is presented, and it is shown that the objectives of fuel efficiency and traffic flow are in fact not only non-conflicting, but also that they could be viewed as one when the global benefits to the network are considered. 相似文献
17.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies. 相似文献
18.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes. 相似文献
19.
Perimeter control based on the Macroscopic Fundamental Diagram (MFD) is widely developed for alleviating or postponing congestion in a protected region. Recent studies reveal that traffic conditions might not be improved if the perimeter control strategies are applied to unstable systems where high demand generates heavy and heterogeneously distributed traffic congestion. Therefore, considering stability of the targeted traffic system is essential, for the sake of developing a feasible and then optimal control strategy. This paper sheds light on this direction. It integrates a stability characterization algorithm of MFD system equations into the Model Predictive Control (MPC) scheme, and features respectively an upper and a lower bound of the feasible control inputs, to guarantee system stability. Firstly, the dynamics of traffic heterogeneity and its effect on the MFD are analyzed, using real data from Guangzhou in China. Piecewise affine functions of average flow are proposed to capture traffic heterogeneity in both regional and subregional MFDs. Secondly, stability of a three-state two-region system is investigated via stable equilibrium and surface boundaries analysis. Finally, a three-layer hierarchical control strategy is introduced for the studied two-region heterogeneous urban networks. The first layer of the controller calculates the stable surface boundaries for the given traffic demands and then determines the bounds of control input (split rate). An MPC approach in the second layer is used to solve an optimization problem with two objectives of minimizing total network delay and maximizing network throughput. Heterogeneity among the subregions is minimized in the last layer by implementing simultaneously a subregional perimeter flow control and an internal flow control. The effectiveness and stability of the proposed control approach are verified by comparison with four existing perimeter control strategies. 相似文献
20.
Two-dimensional multi-objective optimizations have been used for decades for the problems in traffic engineering although only few times so far in the optimization of signal timings. While the other engineering and science disciplines have utilized visualization of 3-dimensional Pareto fronts in the optimization studies, we have not seen many of those concepts applied to traffic signal optimization problems. To bridge the gap in the existing knowledge this study presents a methodology where 3-dimensional Pareto Fronts of signal timings, which are expressed through mobility, (surrogate) safety, and environmental factors, are optimized by use of an evolutionary algorithm. The study uses a segment of 5 signalized intersections in West Valley City, Utah, to test signal timings which provide a balance between mobility, safety and environment. In addition, a set of previous developed signal timing scenarios, including some of the Connected Vehicle technologies such as GLOSA, were conducted to evaluate the quality of the 3-dimensional Pareto front solutions. The results show success of 3-dimensinal Pareto fronts moving towards optimality. The resulting signal timing plans do not show large differences between themselves but all improve on the signal timings from the field, significantly. The commonly used optimization of standard single-objective functions shows robust solutions. The new set of Connected Vehicle technologies also shows promising benefits, especially in the area of reducing inter-vehicular friction. The resulting timing plans from two optimization sets (constrained and unconstrained) show that environmental and safe signal timings coincide but somewhat contradict mobility. Further research is needed to apply similar concepts on a variety of networks and traffic conditions before generalizing findings. 相似文献