首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

2.
    
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   

3.
    
We present a sensitivity analysis for a mechanical model, which is used to estimate the energy demand of battery electric vehicles. This model is frequently used in literature, but its parameters are often chosen incautiously, which can lead to inaccurate energy demand estimates. We provide a novel prioritization of parameters and quantify their impact on the accuracy of the energy demand estimation, to enable better decision making during the model parameter selection phase. We furthermore determine a subset of parameters, which has to be defined, in order to achieve a desired estimation accuracy. The analysis is based on recorded GPS tracks of a battery electric vehicle under various driving conditions, but results are equally applicable for other BEVs. Results show that the uncertainty of vehicle efficiency and rolling friction coefficient have the highest impact on accuracy. The uncertainty of power demand for heating and cooling the vehicle also strongly affects the estimation accuracy, but only at low speeds. We also analyze the energy shares related to each model component including acceleration, air drag, rolling and grade resistance and auxiliary energy demand. Our work shows that, while some components make up a large share of the overall energy demand, the uncertainty of parameters related to these components does not affect the accuracy of energy demand estimation significantly. This work thus provides guidance for implementing and calibrating an energy demand estimation based on a longitudinal dynamics model.  相似文献   

4.
    
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

5.
In view of global warming and climate change, a transition from combustion to electric vehicles (EVs) can help to reduce greenhouse gas emissions and improve air quality. However, high acquisition costs and short driving ranges are considered to be main factors which impede the diffusion of EVs. Since electricity needs to be produced from renewable energy sources for EVs to be a true green alternative, the environmental performance of EVs is also presumed to be an important factor. This paper investigates the role of environmental performance compared to price value and range confidence regarding consumer purchase intentions for EVs. To develop our hypothesis, we interview 40 end-user subjects about their beliefs toward EVs. Then, we perform 167 test drives with a plug-in battery EV and conduct a survey with the participants to test the hypothesis. Results of a structural equation modeling support the hypothesis that the environmental performance of EVs is a stronger predictor of attitude and thus purchase intention than price value and range confidence.  相似文献   

6.
    
This paper examines the charging behavior of 7,979 plug-in electric vehicle (PEV) owners in California. The study investigates where people charge be it at home, at work, or at public location, and the level of charging they use including level 1, level 2, or DC fast charging. While plug-in behavior can differ among PEV owners based on their travel patterns, preferences, and access to infrastructure studies often make generalizations about charging behavior. In this study, we explore differences in charging behavior among different types of PEV owners based on their use of charging locations and levels, we then identify factors associated with PEV owner’s choice of charging location and charging level. We identified socio-demographic (gender and age), vehicle characteristics, commute behavior, and workplace charging availability as significant factors related to the choice of charging location.  相似文献   

7.
    
Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond random effects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be exactly perceived.  相似文献   

8.
    
Understanding travellers’ behaviour is key element in transportation planning. This article presents a route choice model for metro networks that considers different time components as well as variables related to the transferring experience, train crowding, network topology and socio-demographic characteristics. The route choice model is applied to the London Underground and Santiago Metro networks, to make a comparison of the decision making process of the users on both cities. As all the variables are statistically significant, it is possible to affirm that public transport users take into account a wide variety of elements when choosing routes. While in London the travellers prefer to spend time walking, in Santiago is preferable to spend time waiting. Santiago Metro users are more willing to travel in crowded trains than London Underground users. Both user groups have a similar dispreference to transfers after controlling for the time spent on transfer, but different attitudes to ascending and descending transfers. Topological factors presented on a distorted Metro map are more important than actual topology to passengers’ route choice decisions.  相似文献   

9.
    
Incentives to buy and use electric vehicles (EVs) may influence individuals’ decisions to do so. To examine these impacts, a latent class discrete choice model is developed to analyse consumer preferences related to EV attributes and related government incentives. Data was collected from a stated preference survey of 1,076 residents of New South Wales (NSW), Australia. According to the results, the proposed latent constructs classify respondents into five segments. The segments are then used to distinguish respondent behaviours regarding EV attributes and related government incentives. The results show that rebate on the upfront cost of an EV is the most preferred one-off financial incentive, because EVs are expected to be expensive, especially in Australia which has a very small EV market at present. Furthermore, rebates on energy bills and parking fees are also well-received, as these things are expensive in Sydney, Australia. Thus, operational incentives for discounts on energy bills and parking fees may facilitate the success of EVs in NSW.  相似文献   

10.
    
In this paper, we propose a novel approach to model route choice behaviour in a tolled road network with a bi-objective approach, assuming that all users have two objectives: (1) minimise travel time; and (2) minimise toll cost. We assume further that users have different preferences in the sense that for any given path with a specific toll, there is a limit on the time that an individual would be willing to spend. Different users can have different preferences represented by this indifference curve between toll and time. Time surplus is defined as the maximum time minus the actual time. Given a set of paths, the one with the highest (or least negative) time surplus will be the preferred path for the individual. This will result in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-objective user equilibrium (TSmaxBUE) condition. That is, for each O–D pair, all individuals are travelling on the path with the highest time surplus value among all the efficient paths between this O–D pair.We show that the TSmaxBUE condition is a proper generalisation of user equilibrium with generalised cost function, and that it is equivalent to bi-objective user equilibrium. We also present a multi-user class version of the TSmaxBUE condition and demonstrate our concepts with illustrative examples.  相似文献   

11.
    
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

12.
    
This paper presents the results of a preference survey of 1545 respondents’ willingness to purchase electric vehicles (EVs) in Philadelphia. We pay particular attention to respondents’ willingness to pay for convenient charging systems and parking spaces. If the value of dedicated parking substantially outweighs the value of convenient charging systems, residential-based on-street charging systems are unlikely to ever be politically palatable. As expected, respondents are generally willing to pay for longer range, shorter charging times, lower operating costs, and shorter parking search times. For a typical respondent, a $100 per month parking charge decreases the odds of purchasing an EV by around 65%. Across mixed logit and latent class models, we find substantial variation in the willingness to pay for EV range, charge time, and ease of parking. Of note, we find two primary classes of respondents with substantially different EV preferences. The first class tends to live in multifamily housing units in central parts of the city and puts a high value on parking search time and the availability of on-street charging stations. The second class, whose members are likelier to be married, wealthy, conservative, and residing in single-family homes in more distant neighborhoods, are willing to pay more for EV range and charge time, but less for parking than the first group. They are also much likelier to consider purchasing EVs at all. We recommend that future research into EV adoption incorporate neighborhood-level features, like parking availability and average trip distances, which vary by neighborhood and almost certainly influence EV adoption.  相似文献   

13.
    
In spite of the purported positive environmental consequences of electrifying the light duty vehicle fleet, the number of electric vehicles (EVs) in use is still insignificant. One reason for the modest adoption figures is that the mass acceptance of EVs to a large extent is reliant on consumers’ perception of EVs. This paper presents a comprehensive overview of the drivers for and barriers against consumer adoption of plug-in EVs, as well as an overview of the theoretical perspectives that have been utilized for understanding consumer intentions and adoption behavior towards EVs. In addition, we identify gaps and limitations in existing research and suggest areas in which future research would be able to contribute.  相似文献   

14.
In spite of their widespread use in policy design and evaluation, relatively little evidence has been reported on how well traffic equilibrium models predict real network impacts. Here we present what we believe to be the first paper that together analyses the explicit impacts on observed route choice of an actual network intervention and compares this with the before-and-after predictions of a network equilibrium model. The analysis is based on the findings of an empirical study of the travel time and route choice impacts of a road capacity reduction. Time-stamped, partial licence plates were recorded across a series of locations, over a period of days both with and without the capacity reduction, and the data were ‘matched’ between locations using special-purpose statistical methods. Hypothesis tests were used to identify statistically significant changes in travel times and route choice, between the periods of days with and without the capacity reduction. A traffic network equilibrium model was then independently applied to the same scenarios, and its predictions compared with the empirical findings. From a comparison of route choice patterns, a particularly influential spatial effect was revealed of the parameter specifying the relative values of distance and travel time assumed in the generalised cost equations. When this parameter was ‘fitted’ to the data without the capacity reduction, the network model broadly predicted the route choice impacts of the capacity reduction, but with other values it was seen to perform poorly. The paper concludes by discussing the wider practical and research implications of the study’s findings.  相似文献   

15.
    
This article presents a route choice model for public transit networks that incorporates variables related to network topology, complementing those found in traditional models based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and demographic characteristics (income level, trip purpose, etc.). The topological variables represent concepts such as the directness of the chosen route and user knowledge of the network. For both of these factors, the necessary data is endogenous to the modelling process and can be quantified without the need for information-gathering beyond what is normally required for building route choice models. Other novel variables in the proposed formulation capture notions of user comfort such as vehicle occupancy rates and certain physical characteristics of network stations. We conclude that these new variables significantly improve the explanatory and predictive ability of existing route choice specifications.  相似文献   

16.
    
Travel time is very critical for emergency response and emergency vehicle (EV) operations. Compared to ordinary vehicles (OVs), EVs are permitted to break conventional road rules to reach the destination within shorter time. However, very few previous studies address the travel time performance of EVs. This study obtained nearly 4-year EV travel time data in Northern Virginia (NOVA) region using 76,000 preemption records at signalized intersections. First, the special characteristics of EV travel time are explored in mean, median, standard deviation and also the distribution, which display largely different characteristics from that of OVs in previous studies. Second, a utility-based model is proposed to quantify the travel time performance of EVs. Third, this paper further investigates two important components of the utility model: benchmark travel time and standardized travel time. The mode of the distribution is chosen as benchmark travel time, and its nonlinear decreasing relationship with the link length is revealed. At the same time, the distribution of standardized travel time is fitted with different candidate distributions and Inv. Gaussian distribution is proved to be the most suitable one. Finally, to validate the proposed model, we implement the model in case studies to estimate link and route travel time performance. The results of route comparisons also show that the proposed model can support EV route choice and eventually improve EV service and operations.  相似文献   

17.
    
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

18.
    
Widespread adoption of electric vehicles (EVs) may contribute to the alleviation of problems such as environmental pollution, global warming and oil dependency. However, the current market penetration of EV is relatively low in spite of many governments implementing strong promotion policies. This paper presents a comprehensive review of studies on consumer preferences for EV, aiming to better inform policy-makers and give direction to further research. First, we compare the economic and psychological approach towards this topic, followed by a conceptual framework of EV preferences which is then implemented to organise our review. We also briefly review the modelling techniques applied in the selected studies. Estimates of consumer preferences for financial, technical, infrastructure and policy attributes are then reviewed. A categorisation of influential factors for consumer preferences into groups such as socio-economic variables, psychological factors, mobility condition, social influence, etc. is then made and their effects are elaborated. Finally, we discuss a research agenda to improve EV consumer preference studies and give recommendations for further research.

Abbreviations: AFV: alternative fuel vehicle; BEV: battery electric vehicle; CVs: conventional vehicles; EVs: electric vehicles; FCV: fuel cell vehicle; HCM: hybrid choice model; HEV: hybrid electric vehicle (non plug-in); HOV: high occupancy vehicle; MNL: MultiNomial logit; MXL: MiXed logit model; PHEV: plug-in hybrid electric vehicle; RP: revealed preference; SP: stated preference.  相似文献   


19.
    
This paper addresses the equilibrium traffic assignment problem involving battery electric vehicles (BEVs) with flow-dependent electricity consumption. Due to the limited driving range and the costly/time-consuming recharging process required by current BEVs, as well as the scarce availability of battery charging/swapping stations, BEV drivers usually experience fear that their batteries may run out of power en route. Therefore, when choosing routes, BEV drivers not only try to minimize their travel costs, but also have to consider the feasibility of their routes. Moreover, considering the potential impact of traffic congestion on the electricity consumption of BEVs, the feasibility of routes may be determined endogenously rather than exogenously. A set of user equilibrium (UE) conditions from the literature is first presented to describe the route choice behaviors of BEV drivers considering flow-dependent electricity consumption. The UE conditions are then formulated as a nonlinear complementarity model. The model is further formulated as a variational inequality (VI) model and is solved using an iterative solution procedure. Numerical examples are provided to demonstrate the proposed models and solution algorithms. Discussions of how to evaluate and improve the system performance with non-unique link flow distribution are offered. A robust congestion pricing model is formulated to obtain a pricing scheme that minimizes the system travel cost under the worst-case tolled flow distribution. Finally, a further extension of the mathematical formulation for the UE conditions is provided.  相似文献   

20.
This paper presents an integrated simulator “CUIntegration” to evaluate routing strategies based on energy and/or traffic measures of effectiveness for any Alternative Fuel Vehicles (AFVs). The CUIntegration can integrate vehicle models of conventional vehicles as well as AFVs developed with MATLAB-Simulink, and a roadway network model developed with traffic microscopic simulation software VISSIM. The architecture of this simulator is discussed in this paper along with a case study in which the simulator was utilized for evaluating a routing strategy for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). The authors developed a route optimization algorithm to guide an AFV based on that AFV driver’s choice, which included; finding a route with minimum (1) travel time, (2) energy consumption or (3) a combination of both. The Application Programming Interface (API) was developed using Visual Basic to simulate the vehicle models/algorithms developed in MATLAB and direct vehicles in a roadway network model developed in VISSIM accordingly. The case study included a section of Interstate 83 in Baltimore, Maryland, which was modeled, calibrated and validated. The authors considered a worst-case scenario with an incident on the main route blocking all lanes for 30 min. The PHEVs and EVs were represented by integrating the MATLAB-Simulink vehicle models with the traffic simulator. The CUIntegration successfully combined vehicle models with a roadway traffic network model to support a routing strategy for PHEVs and EVs. Simulation experiments with CUIntegration revealed that routing of PHEVs resulted in cost savings of about 29% when optimized for the energy consumption, and for the same optimization objective, routing of EVs resulted in about 64% savings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号