首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Extensive published literature shows that hydrated lime improves Hot Mix Asphalt (HMA) durability. Its impact on the environmental impact of HMA has not been investigated. This paper presents a comparative Life Cycle Assessment (LCA) for the use of HMA without hydrated lime (classical HMA) and with hydrated lime (modified HMA) for the lifetime of a highway. System boundaries cover the life cycle from cradle-to-grave, meaning extraction of raw materials to end of life of the road. The main assumptions were: 1. Lifetime of the road 50 years; 2. Classical HMA with a life span of 10 years, maintenance operations every 10 years; 3. Modified HMA with an increase in the life span by 25%, maintenance operations every 12.5 years. For the lifetime of the road, modified HMA has the lowest environmental footprint compared to classical HMA with the following benefits: 43% less primary total energy consumption resulting in 23% lower emissions of greenhouse gases. Partial LCAs focusing only on the construction and/or maintenance phase should be used with caution since they could lead to wrong decisions if the durability and the maintenance scenarios differ. Sustainable construction technologies should not only consider environmental impact as quantified by LCA, but also economic and social impacts as well. Avoiding maintenance steps means less road works, fewer traffic jams and hence less CO2 emissions.  相似文献   

2.
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h−1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW−1 and 160 ± 90 EUR2012 kW−1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.  相似文献   

3.
This paper examines the relevance of incorporating comprehensive life-cycle environmental data into the design and management of pedestrian pavements to minimize the impact on the built environment. The overall primary energy demand and global warming potential of concrete, asphalt and granite sidewalks are assessed. A design with a long functional lifetime reduces its overall primary energy demand and global warming potential due to lower maintenance and repair requirements. However, long-lived construction solutions do not ensure a lower life-cycle primary energy demand and global warming potential than for shorter-lived designs; these values depend on the environmental suitability of the materials chosen for paving. Asphalt sidewalks reduce long-term global warming potential under exposure conditions where the functional lifetime of the pavements is less than 15 years. In places where it is known that a concrete sidewalk can have a life of at least 40 years, a concrete sidewalk is the best for minimizing both long-term primary energy demand and global warming potential. Granite sidewalks are the largest energy consumers and greenhouse gas contributors.  相似文献   

4.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

5.
Noise and vibration are two of the main problems associated with railways in residential areas. To ensure quality of life and well-being of inhabitants living in the vicinity of railway paths, it is important to evaluate, understand, control and regulate railway noise and vibration. Much attention has been focused on the impact of noise from railway traffic but the consideration of railway-induced vibration has often been neglected. This paper aims to provide policy guidance based on results obtained from the analyses of relationships estimated from ordinal logit models between human response, railway noise exposure and railway vibration exposure. This was achieved using data from case studies comprised of face-to-face interviews (N = 931), internal vibration measurements (N = 755), and noise calculations (N = 688) collected within the study “Human Response to Vibration in Residential Environments” by the University of Salford, UK. Firstly, the implications of neglecting vibration in railway noise policies are investigated. The findings suggest that it is important to account for railway induced vibrations in future noise and transport policies, as neglecting vibrations results in an underestimation of people highly annoyed by noise. Secondly, implications of neglecting different types of railway sources are presented. It was found that the impact of noise and vibration form maintenance operations should be better understood and should be taken into account when assessing the environmental impact of railways in residential environments. Finally, factors that were found to influence railway vibration annoyance are presented and expressed as weightings. The data shows that factors specific to a particular residential area should also be taken into account in future vibration policies as the literature shows that attitudinal, socio-demographic and situational factors have a large influence on vibration annoyance responses. This work will be of interest to researchers and environmental health practitioners involved in the assessment of vibration complaints, as well as to policy makers, planners and consultants involved in the design of buildings and railways.  相似文献   

6.
Forest operations use fossil fuels, which should be considered when environmental impact in the wood procurement is of concern. Road freight transportation is the most common operation in timber transportation, and thus is an important source of greenhouse gas emissions. This study assesses the impact of the new larger and heavier vehicles (LHV) on environmental emissions using the synchronized calculation method. The maximum (theoretical) and operational effects of 76 t LHV with calculations made for three weight limits (60, 64 and 68 t) are compared in Finland. Based on Enterprise Resource Planning (ERP) data, environmental energy efficiency (measured in relation to the trip) increased 9.2%. The reduction in fuel consumption was 12.5%, though this is likely to under-estimate the long-term effects that will be achieved when forest operations are fully adjusted to the maximum weight limit. A comparison with the European countries and a preliminary sensitivity analysis of the system demonstrate that the technological development to improve the transporting efficiency is essential for realizing 76 t LHV utilization in Finland.  相似文献   

7.
As decision-makers increasingly embrace life-cycle assessment (LCA) and target transportation services for regional environmental goals, it becomes imperative that outcomes from changes to transportation infrastructure systems are accurately estimated. Greenhouse gas (GHG) reduction policies have created interest in better understanding how public transit systems reduce emissions. Yet the use of average emission factors (e.g., grams CO2e per distance traveled) persists as the state-of-the-art masking the variations in emissions across time, and confounding the ability to accurately estimate the environmental effects from changes to transit infrastructure and travel behavior. An LCA is developed of the Expo light rail line and a competing car trip (in Los Angeles, California) that includes vehicle, infrastructure, and energy production processes, in addition to propulsion. When results are normalized per passenger kilometer traveled (PKT), life-cycle processes increase energy use and GHG emissions up to 83%, and up to 690% for smog and respiratory impact potentials. However, the use of a time-independent PKT normalization obfuscates a decision-maker’s ability to understand whether the deployment of a transit system reduces emissions below a future year policy target (e.g., 80% of 1990 emissions by 2050). The year-by-year marginal effects of the decision to deploy the Expo line are developed including reductions in automobile travel. The time-based marginal results provide clearer explanations for how environmental effects in a region change and the critical life-cycle processes that should be targeted to achieve policy targets. It shows when environmental impacts payback and how much reduction is achieved by a policy-specified future year.  相似文献   

8.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

9.
We construct consumer-informed estimates of residential access to vehicle charging to guide understanding of plug-in electric vehicle demand, use, and energy impacts. Using a web-based survey, study 1 estimates that about half of new car-buying US households park at least one vehicle within 25 ft of a Level 1 (110/120 V) electrical outlet at home. Study 2 estimates that just under one-third of new car-buying households in San Diego County have access to Level 2 (220/240 V) charging. Further, 20% of the sample are both able and willing to install Level 2 PEV recharging infrastructure at the prices examined.  相似文献   

10.
The production and use of renewable fuels in the transport sector are rapidly increasing. Renewable fuel standard (RFS) is a strong regulatory component and quantitative policy expected to have a significant market impact. In Korea, RFS implementation was agreed upon in July 2013 and will be enforced beginning in July 2015. Drivers’ acceptance is the most important consideration for RFS introduction and sustainable implementation. This study analyzed Korean customer preferences for RFS and quantified their acceptance level according to policy design. A choice experiment was analyzed with a mixed logit model to reflect the heterogeneity of respondents’ preferences. Respondents were relatively sensitive to the price increase, while other attributes had little effect on acceptance of RFS. Differences between the influences of attributes on drivers’ acceptance should be considered when designing RFS implementation. Furthermore, it is recommended that the price of transportation fuels should be limited to an increase between KRW 10 and 20/liter (USD 8.879 × 10−3 and 1.776 × 10−2/liter) to ensure high acceptance level, secure a budget for infrastructure, and achieve substantial environmental improvement.  相似文献   

11.
We develop a method for empirically measuring the difference in transport related carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their transport CO2 footprints by 84% when buying standard consumer electronics products.  相似文献   

12.
A before and after hedonic model is used to determine the property value impacts on properties already served by the transit system caused by extensions to Bogotá’s bus rapid transit system. Asking prices of residential properties belonging to an intervention area (N = 1407 before, 1570 after) or a control area (N = 267 before, 732 after) and offered for sale between 2001 and 2006 are used to determine capitalization of the enhanced regional access provided by the extension. Properties offered during the year the extension was inaugurated and in subsequent years have asking prices that are between 13% and 14% higher than prices for properties in the control area, after adjusting for structural, neighborhood and regional accessibility characteristics of each property. Furthermore, the appreciation is similar for properties within 500 m and properties between 500 m and 1 km of the BRT.  相似文献   

13.
The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 ± 200 W/m2/AOD for the ground mode and 531 ± 190 W/m2/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 ± 0.06 W/m2 per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved.  相似文献   

14.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year.  相似文献   

15.
This article reports on two different methods applied in the same survey (N = 1881) to measure the impact of the carsharing system car2go on other transportation modes in Ulm, Germany. The first method calculated how the mobility behavior of respondents would hypothetically be at the present time if car2go was not available. The second method determined the respondents’ past mobility behavior before using car2go. Confounding circumstances were corrected in both approaches through different mechanisms. Comparable methods calculating carsharing impacts have only been applied individually in past studies. This is the first study applying two measurement methods within the same survey, which enables a triangulation. As other influencing parameters were equal (e.g. sampling frame, nonresponse bias, mode of asking, point in time of the survey), the deviating results are assumed to have resulted from the different measurement techniques. The findings indicate a primacy effect (disproportionally high selection of first answer options) having influenced the first measurement and an overestimation of the impact on total kilometers travelled in the second measurement. The comparative findings of this dual-measurement could contribute to research designs of greater precision in future work on carsharing impacts.  相似文献   

16.
In this study, the market potential of car sharing has been evaluated using multiple alternative scenarios which examine the geographic, financial and environmental factors influencing car sharing adoption. The scenarios are applied to the available and collected travel information of the Irish population to estimate the potential impact of introducing car sharing in Ireland. The analysis identified that car owners who travel predominantly on alternative modes, could make significant cost and CO2 savings through car sharing. A reduction of yearly CO2 emissions of 86 kt is readily achievable through car sharing, with reductions up to 895 kt possible with appropriate policy and financial support. These figures are comparable to other measures proposed under the Irish National Climate Change Strategy.  相似文献   

17.
This study attempts to present an urban road transportation strategy focusing on the mitigation of both GHGs emission and public health damage, taking Xiamen City as a case study. We developed a Public Health and GHGs Emission model to estimate the impacts of direct energy-consumption-related GHGs emissions and public health damage in Xiamen’s road transportation strategies from 2008 to 2025, considering the environmental benefits and economic costs. Two scenarios were designed to describe future transportation strategies for Xiamen City, and mitigation potentials for both GHGs emission and public health costs were estimated from 2008 to 2025 under a series of options. The results show that enacting controls on private vehicles would be most effective to GHGs mitigation, while enacting controls on government and rental vehicles would contribute the most to NO2 and PM2.5 reductions. Compared with the Business as Usual scenario, the Integrated scenario would achieve about a 68% energy consumption reduction and save 0.23 billion yuan (95% CI: 0.16, 0.32) in health costs in 2025. It is clear that integrated and advisable strategies need to mitigate the adverse impacts of urban road vehicles on GHGs emissions and public health and economic costs, particularly in regions of rapid urbanization.  相似文献   

18.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

19.
Detailed NOx, SO2 and PM2.5 emissions have been estimated for cruise ships in the five busiest Greek ports (i.e. Piraeus, Santorini, Mykonos, Corfu and Katakolo) for year 2013. The emissions were analyzed in terms of gas species, seasonality and activity. The total in-port inventory of cruise shipping accounted to 2742.7 tons: with NOx being dominant (1887.5 tons), followed by SO2 and PM2.5 (760.9 and 94.3 tons respectively). Emissions during hotelling corresponded to 88.5% of total and have significantly outweighed those produced during ships’ maneuvering activities (11.5% of total). Seasonality was found to play a major role, as summer emissions and associated impacts were significantly augmented. The anticipated health impacts of ship emissions can reach to €24.3 million or to €5.3 per passenger proving the necessity of control of the emissions produced by cruise ships in port cities or policy and measures towards a more efficient cruise industry.  相似文献   

20.
We investigate the impact of the commencement of high-speed rail (HSR) services on airlines’ domestic available seats on affected routes in China, Japan, and South Korea. The study is based on a dataset covering the 1994–2012 period. We use the propensity score matching method to pair HSR affected routes with routes without HSR services. The difference-in-difference approach is used to estimate the impact of HSR entry. We find that HSR entries may, on average, lead to a more significant drop in airlines’ seat capacity in China than in Japan and Korea given similar HSR service speed. In China, HSR services with a maximum speed about 200 km/h can produce strong negative impacts on medium-haul air routes but induce more air seat capacity on long-haul routes. HSR services with a maximum speed of 300 km/h have little extra impact on medium-haul routes but a strong negative impact on long-haul routes. Finally, although HSR has a strong negative impact in Japan’s short-haul and medium-haul air markets, little impact is observed in its long-haul markets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号