首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

2.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

3.
This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial change of service coverage due to ride sharing. Our results show that switching from traditional taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining the service level and without significant increase in wait time for the riders. The benefit of ride sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi capacity, increases system flexibility. Constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower the service levels in the suburban regions of the city.  相似文献   

4.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

5.
6.
This paper proposes a cell-based model to predict local customer-search movements of vacant taxi drivers, which incorporates the modeling principles of the logit-based search model and the intervening opportunity model. The local customer-search movements were extracted from the global positioning system data of 460 Hong Kong urban taxis and inputted into a cell-based taxi operating network to calibrate the model and validate the modeling concepts. The model results reveal that the taxi drivers’ local search decisions are significantly affected by the (cumulative) probability of successfully picking up a customer along the search route, and that the drivers do not search their customers under the random walk principle. The proposed model helps predict the effects of the implementation of the policies in adjusting the taxi fleet size and the changes in passenger demand on the customer-search distance and time of taxi drivers.  相似文献   

7.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland.  相似文献   

8.
Lack of charging infrastructure is an important barrier to the growth of the plug-in electric vehicle (PEV) market. Public charging infrastructure has tangible and intangible value, such as reducing range anxiety or building confidence in the future of the PEV market. Quantifying the value of public charging infrastructure can inform analysis of investment decisions and can help predict the impact of charging infrastructure on future PEV sales. Estimates of willingness to pay (WTP) based on stated preference surveys are limited by consumers’ lack of familiarity with PEVs. As an alternative, we focus on quantifying the tangible value of public PEV chargers in terms of their ability to displace gasoline use for PHEVs and to enable additional electric (e−) vehicle miles for BEVs, thereby mitigating the limitations of shorter range and longer recharging time. Simulation studies provide data that can be used to quantify e-miles enabled by public chargers and the value of additional e-miles can be inferred from econometric estimates of WTP for increased vehicle range. Functions are synthesized that estimate the WTP for public charging infrastructure by plug-in hybrid and battery electric vehicles, conditional on vehicle range, annual vehicle travel, pre-existing charging infrastructure, energy prices, vehicle efficiency, and household income. A case study based on California’s public charging network in 2017 indicates that, to the purchaser of a new BEV with a 100-mile range and home recharging, existing public fast chargers are worth about $1500 for intraregional travel, and fast chargers along intercity routes are valued at over $6500.  相似文献   

9.
Plug-in hybrid electric vehicles (PHEVs) can provide many of the benefits of battery electric vehicles (BEVs), such as reduced petroleum consumption and greenhouse gas emissions, without the “range anxiety” that can accompany driving a vehicle with limited range when there are few charging opportunities. However, evidence indicates that PHEVs are often plugged in more frequently than BEVs in practice. This is somewhat paradoxical: drivers for whom plugging in is optional tend to do so more frequently than those for whom it is necessary. This has led to the coining of a new term – “gas anxiety” – to describe the apparent desire of PHEV drivers to avoid using gasoline. In this paper, we analyze the variables influencing the charging choices of PHEV owners, testing whether drivers express preferences consistent with the concept of gas anxiety. We analyze data collected in a web-based stated preference survey using a latent class logit model. The results reveal two classes of decision-making patterns among the survey respondents: (1) those who weight the cost of gasoline and the cost of recharging approximately equally (the cost-minimizing class), and (2) those who weight the cost gasoline more heavily than the cost of recharging (the gas anxiety class). Respondents in the gas anxiety class expressed a willingness to recharge at a charging station even when doing so would cost approximately four times as much as the cost of the gasoline avoided. While the gas anxiety class represents the majority of our sample, more recent PHEV adopters are more likely to be in the cost-minimizing class. Looking forward, this suggests that public charging station operators may need to price charging competitively with gasoline on a per-mile basis to attract PHEV owners.  相似文献   

10.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.  相似文献   

11.
Electric vehicles (EVs) are promising alternative to conventional vehicles, due to their low fuel cost and low emissions. As a subset of EVs, plug-in hybrid electric vehicles (PHEVs) backup batteries with combustion engines, and thus have a longer traveling range than battery electric vehicles (BEVs). However, the energy cost of a PHEV is higher than a BEV because the gasoline price is higher than the electricity price. Hence, choosing a route with more charging opportunities may result in less fuel cost than the shortest route. Different with the traditional shortest-path and shortest-time routing methods, we propose a new routing choice with the lowest fuel cost for PHEV drivers. Existing algorithms for gasoline vehicles cannot be applied because they never considered the regenerative braking which may result in negative energy consumption on some road segments. Existing algorithms for BEVs are not competent too because PHEVs have two power sources. Thus, even if along the same route, different options of power source will lead to different energy consumption. This paper proposes a cost-optimal algorithm (COA) to deal with the challenges. The proposed algorithm is evaluated using real-world maps and data. The results show that there is a trade-off between traveling cost and time consumed when driving PHEVs. It is also observed that the average detour rate caused by COA is less than 14%. Significantly, the algorithm averagely saves more than 48% energy cost compared to the shortest-time routing.  相似文献   

12.
We study whether taxi companies can simultaneously save petroleum and money by transitioning to electric vehicles. We propose a process to compute the return on investment of transitioning a taxi corporation’s fleet to electric vehicles. We use Bayesian data analysis to infer the revenue changes associated with the transition. We do not make any assumptions about the vehicles’ mobility patterns; instead, we use a time-series of GPS coordinates of the company’s existing petroleum-based vehicles to derive our conclusions. As a case study, we apply our process to a major taxi corporation, Yellow Cab San Francisco (YCSF). Using current prices, we find that transitioning their fleet to battery electric vehicles and plug-in hybrid electric vehicles is profitable for the company. Furthermore, given that gasoline prices in San Francisco are only 5.4 % higher than the rest of the United States, but electricity prices are 75 % higher; taxi companies with similar practices and mobility patterns in other cities are likely to profit more than YCSF by transitioning to electric vehicles.  相似文献   

13.
This study addresses the problem of scheduling a fleet of taxis that are appointed to solely service customers with advance reservations. In contrast to previous studies that have dealt with the planning and operations of a taxi fleet with only electric vehicles (EVs), we consider that most taxi companies may have to operate with fleets comprised of both gasoline vehicles (GVs) and plug-in EVs during the transition from GV to (complete) EV taxi fleets. This paper presents an innovative multi-layer taxi-flow time-space network which effectively describes the movements of the taxis in the dimensions of space and time. An optimization model is then developed based on the time-space network to determine an optimal schedule for the taxi fleet. The objective is to minimize the total operating cost of the fleet, with a set of operating constraints for the EVs and GVs included in the model. Given that the model is formulated as an integer multi-commodity network flow problem, which is characterized as NP-hard, we propose two simple but effective decomposition-based heuristics to efficiently solve the problem with practical sizes. Test instances generated based on the data provided by a Taiwan taxi company are solved to evaluate the solution algorithms. The results show that the gaps between the objective values of the heuristic solutions and those of the optimal solutions are less than 3%, and the heuristics require much less time to obtain the good quality solutions. As a result, it is shown that the model, coupled with the algorithms, can be an effective planning tool to assist the company in routing and scheduling its fleet to service reservation customers.  相似文献   

14.
Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking “hotspots” are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and NOx will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijing’s summer peak power.  相似文献   

15.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

16.
Zhang  Wenwei  Zhao  Hui 《Transportation》2021,48(4):1895-1929
Transportation - The limited endurance mileage of battery electric vehicles (BEVs) affects mode choice of commuters inevitably. To help facilitate BEV charging and improve accessibility of transit...  相似文献   

17.
In this paper, we study battery capacity design for battery electric vehicles (BEVs). The core of such design problems is to find a good tradeoff between minimizing the capacity to reduce financial costs of drivers and increasing the capacity to satisfy daily travel demands. The major difficulty of such design problems lies in modeling the diversity of daily travel demands. Based on massive trip records of taxi drivers in Beijing, we find that the daily vehicle miles traveled (DVMT) of a driver (e.g., a taxi driver) may change significantly in different days. This investigation triggers us to propose a mixture distribution model to describe the diversity in DVMT for various driver in different days, rather than the widely employed single distribution model. To demonstrate the merit of this new model, we consider value-at-risk and mean-variance battery capacity design problems for BEV, with respect to conventional single and new mixture distribution models of DVMT. Testing results indicate that the mixture distribution model better leads to better solutions to satisfy various drivers.  相似文献   

18.
Reducing roadside emissions is a common challenge in metropolitan cities. In Hong Kong, conventional liquefied petroleum gas taxis are one of the main contributors to roadside emissions as they operate on the streets 24 h a day with a long daily driving mileage. Moreover, these taxis suffer from a severely poor service reputation. To enhance the environmental friendliness and service quality of the taxi industry, this study explores the market potential of operating premium electric taxis in the dispatching mode. A stated preference survey was conducted to 1410 taxi customers about their taxi-riding choices between premium electric taxis and conventional liquefied petroleum gas taxis. In total, 5640 observations were obtained and used to develop a series of binary logistic regression models with different model formulations for the determination of the significant factors influencing customers’ selections. The findings indicate that walk time to and wait time for taxis were the most critical concerns to the customers, and they were more willing to take premium taxis if their journey distance was longer and their desired improvement on taxi service quality was greater. The socio-demographic status of taxi customers also influences their choices. The associated policy implications are discussed for promoting taxis with better service quality and fewer roadside emissions. The findings provide some policy insights to other international cities that have a similar taxi market to Hong Kong.  相似文献   

19.
The adequate provision of charging infrastructure is critical for the effective deployment of electric taxis. This study attempts to locate charging stations for electric taxis reflecting real-world taxi travel patterns identified from taxis equipped with digital tachographs. Data for one week are processed in order to estimate their charge demand. The estimated temporal distribution of charge demand indicates that it varies day-by-day and hour-by-hour. The maximum set covering model is applied for determining the locations of charging stations. The results show that the pre-specified service distance and service coverage rate (defined by the proportion of total demand served) can be critical factors for determining the number and location of charging stations. These factors should be carefully specified by considering the tradeoff between operational efficiency of charging facilities and user convenience.  相似文献   

20.
Ride-hailing is a clear initial market for autonomous electric vehicles (AEVs) because it features high vehicle utilization levels and strong incentive to cut down labor costs. An extensive and reliable network of recharging infrastructure is the prerequisite to launch a lucrative AEV ride-hailing fleet. Hence, it is necessary to estimate the charging infrastructure demands for an AEV fleet in advance. This study proposes a charging system planning framework for a shared-use AEV fleet providing ride-hailing services in urban area. We first adopt an agent-based simulation model, called BEAM, to describe the complex behaviors of both passengers and transportation systems in urban cities. BEAM simulates the driving, parking and charging behaviors of the AEV fleet with range constraints and identifies times and locations of their charging demands. Then, based on BEAM simulation outputs, we adopt a hybrid algorithm to site and size charging stations to satisfy the charging demands subject to quality of service requirements. Based on the proposed framework, we estimate the charging infrastructure demands and calculate the corresponding economics and carbon emission impacts of electrifying a ride-hailing AEV fleet in the San Francisco Bay Area. We also investigate the impacts of various AEV and charging system parameters, e.g., fleet size, vehicle battery capacity and rated power of chargers, on the ride-hailing system’s overall costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号