首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plug-in hybrid electric vehicles (PHEVs) can provide many of the benefits of battery electric vehicles (BEVs), such as reduced petroleum consumption and greenhouse gas emissions, without the “range anxiety” that can accompany driving a vehicle with limited range when there are few charging opportunities. However, evidence indicates that PHEVs are often plugged in more frequently than BEVs in practice. This is somewhat paradoxical: drivers for whom plugging in is optional tend to do so more frequently than those for whom it is necessary. This has led to the coining of a new term – “gas anxiety” – to describe the apparent desire of PHEV drivers to avoid using gasoline. In this paper, we analyze the variables influencing the charging choices of PHEV owners, testing whether drivers express preferences consistent with the concept of gas anxiety. We analyze data collected in a web-based stated preference survey using a latent class logit model. The results reveal two classes of decision-making patterns among the survey respondents: (1) those who weight the cost of gasoline and the cost of recharging approximately equally (the cost-minimizing class), and (2) those who weight the cost gasoline more heavily than the cost of recharging (the gas anxiety class). Respondents in the gas anxiety class expressed a willingness to recharge at a charging station even when doing so would cost approximately four times as much as the cost of the gasoline avoided. While the gas anxiety class represents the majority of our sample, more recent PHEV adopters are more likely to be in the cost-minimizing class. Looking forward, this suggests that public charging station operators may need to price charging competitively with gasoline on a per-mile basis to attract PHEV owners.  相似文献   

2.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

3.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles.  相似文献   

4.
We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies in China and the U.S. using data from choice-based conjoint surveys fielded in 2012–2013 in both countries. We find that with the combined bundle of attributes offered by vehicles available today, gasoline vehicles continue in both countries to be most attractive to consumers, and American respondents have significantly lower relative willingness-to-pay for BEV technology than Chinese respondents. While U.S. and Chinese subsidies are similar, favoring vehicles with larger battery packs, differences in consumer preferences lead to different outcomes. Our results suggest that with or without each country’s 2012–2013 subsidies, Chinese consumers are willing to adopt today’s BEVs and mid-range PHEVs at similar rates relative to their respective gasoline counterparts, whereas American consumers prefer low-range PHEVs despite subsidies. This implies potential for earlier BEV adoption in China, given adequate supply. While there are clear national security benefits for adoption of BEVs in China, the local and global social impact is unclear: With higher electricity generation emissions in China, a transition to BEVs may reduce oil consumption at the expense of increased air pollution and/or greenhouse gas emissions. On the other hand, demand from China could increase global incentives for electric vehicle technology development with the potential to reduce emissions in countries where electricity generation is associated with lower emissions.  相似文献   

5.
Plug-in hybrid electric vehicles (PHEVs) can be powered by gasoline, grid electricity, or both. To explore potential PHEV energy impacts, a three-part survey instrument collected data from new vehicle buyers in California. We combine the available information to estimate the electricity and gasoline use under three recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles. Using three scenarios to represent plausible conditions on PHEV drivers’ recharge patterns (immediate and unconstrained, universal workplace access, and off-peak only), tradeoffs are described between the magnitude and timing of PHEV electricity use. PHEV electricity use could be increased through policies supporting non-home recharge opportunities, but this increase occurs during daytime hours and could contribute to peak electricity demand. Deferring all recharging to off-peak hours could eliminate all additions to daytime electricity demand from PHEVs, although less electricity is used and less gasoline displaced.  相似文献   

6.
This paper presents an integrated simulator “CUIntegration” to evaluate routing strategies based on energy and/or traffic measures of effectiveness for any Alternative Fuel Vehicles (AFVs). The CUIntegration can integrate vehicle models of conventional vehicles as well as AFVs developed with MATLAB-Simulink, and a roadway network model developed with traffic microscopic simulation software VISSIM. The architecture of this simulator is discussed in this paper along with a case study in which the simulator was utilized for evaluating a routing strategy for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). The authors developed a route optimization algorithm to guide an AFV based on that AFV driver’s choice, which included; finding a route with minimum (1) travel time, (2) energy consumption or (3) a combination of both. The Application Programming Interface (API) was developed using Visual Basic to simulate the vehicle models/algorithms developed in MATLAB and direct vehicles in a roadway network model developed in VISSIM accordingly. The case study included a section of Interstate 83 in Baltimore, Maryland, which was modeled, calibrated and validated. The authors considered a worst-case scenario with an incident on the main route blocking all lanes for 30 min. The PHEVs and EVs were represented by integrating the MATLAB-Simulink vehicle models with the traffic simulator. The CUIntegration successfully combined vehicle models with a roadway traffic network model to support a routing strategy for PHEVs and EVs. Simulation experiments with CUIntegration revealed that routing of PHEVs resulted in cost savings of about 29% when optimized for the energy consumption, and for the same optimization objective, routing of EVs resulted in about 64% savings.  相似文献   

7.
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

8.
Annual expenditures for transportation infrastructure have recently surpassed the funding available through tax and fee collection. One large source of revenue generation for transportation infrastructure is use fees that are charged through taxes on gasoline both on a federal and state level. A massive adoption of electric vehicles (EVs) in the United States would result in significantly lower gasoline consumption and thus reduce the revenue collected to maintain the U.S. transportation infrastructure. We investigate how different vehicles will change the annual fee collected on a marginal basis. In addition, we assess the effects of adoption of alternative vehicles on revenues using several projections of alternative vehicles adoption, both on a state-by-state basis and at the national level. We find that baseline midsize and compact vehicles such as the Toyota Camry and Honda Civic generate approximately $2500–$4000 in tax revenue over their lifetime. Under the current funding structure, battery-electric vehicles (BEVs) such as the Nissan Leaf generate substantially less at $400–$1300, while plug-in hybrid electric vehicles (PHEVs) such as the Chevrolet Volt generate $1500–$2700. Even in states with high lifetime fees due to fuel taxes, such as California, revenue generation can be upwards of 50% lower than in states with high registration fees such as Colorado. Total annual revenue generation decreases by about $200 million by 2025 as a result of EV adoption in our base case, but in projections with larger adoption of alternative vehicles could lead to revenue generation reductions as large as $900 million by 2025. Potential schemes that charge user fees on alternative fuel vehicles to overcome the decrease in revenue include a flat annual registration fee at 0.6% of the vehicle’s manufacturer suggested retail price (MSRP) or 2
per mile fee.  相似文献   

9.
This study investigates the routing aspects of battery electric vehicle (BEV) drivers and their effects on the overall traffic network performance. BEVs have unique characteristics such as range limitation, long battery recharging time, and recuperation of energy lost during the deceleration phase if equipped with regenerative braking system (RBS). In addition, the energy consumption rate per unit distance traveled is lower at moderate speed than at higher speed. This raises two interesting questions: (i) whether these characteristics of BEVs will lead to different route selection compared to conventional internal combustion engine vehicles (ICEVs), and (ii) whether such route selection implications of BEVs will affect the network performance. With the increasing market penetration of BEVs, these questions are becoming more important. This study formulates a multi-class dynamic user equilibrium (MCDUE) model to determine the equilibrium flows for mixed traffic consisting of BEVs and ICEVs. A simulation-based solution procedure is proposed for the MCDUE model. In the MCDUE model, BEVs select routes to minimize the generalized cost which includes route travel time, energy related costs and range anxiety cost, and ICEVs to minimize route travel time. Results from numerical experiments illustrate that BEV drivers select routes with lower speed to conserve and recuperate battery energy while ICEV drivers select shortest travel time routes. They also illustrate that the differences in route choice behavior of BEV and ICEV drivers can synergistically lead to reduction in total travel time and the network performance towards system optimum under certain conditions.  相似文献   

10.
The limited driving ranges, the scarcity of recharging stations and potentially long battery recharging or swapping time inevitably affect route choices of drivers of battery electric vehicles (BEVs). When traveling between their origins and destinations, this paper assumes that BEV drivers select routes and decide battery recharging plans to minimize their trip times or costs while making sure to complete their trips without running out of charge. With different considerations of flow dependency of energy consumption of BEVs and recharging time, three mathematical models are formulated to describe the resulting network equilibrium flow distributions on regional or metropolitan road networks. Solution algorithms are proposed to solve these models efficiently. Numerical examples are presented to demonstrate the models and solution algorithms.  相似文献   

11.
This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.  相似文献   

12.
In previous works, we have shown two-car households to be better suited than one-car households for leveraging the potential benefits of the battery electric vehicle (BEV), both when the BEV simply replaces the second car and when it is used optimally in combination with a conventional car to overcome the BEV’s range limitation and increase its utilization. Based on a set of GPS-measured car movement data from 64 two-car households in Sweden, we here assess the potential electric driving of a plug-in hybrid electric vehicle (PHEV) in a two-car household and compare the resulting economic viability and potential fuel substitution to that of a BEV.Using estimates of near-term mass production costs, our results suggest that, for Swedish two-car households, the PHEV in general should have a higher total cost of ownership than the BEV, provided the use of the BEV is optimized. However, the PHEV will increasingly be favored if, for example, drivers cannot or do not want to optimize usage. In addition, the PHEV and the BEV are not perfect substitutes. The PHEV may be favored if drivers require that the vehicle be able to satisfy all driving needs (i.e., if drivers don’t accept the range and charge-time restrictions of the BEV) or if drivers requires an even larger battery in the BEV to counter range anxiety.We find that, given a particular usage strategy, the electric drive fraction (EDF) of the vehicle fleet is less dependent on whether PHEVs or BEVs are used to replace one of the conventional cars in two-car households. Instead, the EDF depends more on the usage strategy, i.e., on whether the PHEV/BEV is used to replace the conventional car with the higher annual mileage (“the first car”), the less used car (“the second car”), or is used flexibly to substitute for either in order to optimize use. For example, from a fuel replacement perspective it is often better to replace the first car with a PHEV than to replace the second with a BEV.  相似文献   

13.
Plug-in Hybrid Electric Vehicles (PHEVs) show potential to reduce greenhouse gas (GHG) emissions, increase fuel efficiency, and offer driving ranges that are not limited by battery capacity. However, these benefits will not be realized if consumers do not adopt this new technology. Several agent-based models have been developed to model potential market penetration of PHEVs, but gaps in the available data limit the usefulness of these models. To address this, we administered a survey to 1000 stated US residents, using Amazon Mechanical Turk, to better understand factors influencing the potential for PHEV market penetration. Our analysis of the survey results reveals quantitative patterns and correlations that extend the existing literature. For example, respondents who felt most strongly about reducing US transportation energy consumption and cutting greenhouse gas emissions had, respectively, 71 and 44 times greater odds of saying they would consider purchasing a compact PHEV than those who felt least strongly about these issues. However, even the most inclined to consider a compact PHEV were not generally willing to pay more than a few thousand US dollars extra for the sticker price. Consistent with prior research, we found that financial and battery-related concerns remain major obstacles to widespread PHEV market penetration. We discuss how our results help to inform agent-based models of PHEV market penetration, governmental policies, and manufacturer pricing and marketing strategies to promote consumer adoption of PHEVs.  相似文献   

14.
In Germany, market penetration by alternative powertrains has been generally processing at a slow pace. Therefore, reaching the 2020 target of one million registered electric vehicles (EVs) is a major challenge. We analyze the German market by advancing and refining existing consumer-oriented total cost of ownership (TCOC) models and demonstrate the validity of our model by comparing the cost-efficiency of EVs and internal combustion engine vehicles (ICEVs) including the battery resale value for second use and second life. The TCOC model was calculated for the ten most frequently registered battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) and compared with ICEVs in the same vehicle segments. The results are further validated through applying three typical annual mileage driver profiles and by Monte Carlo simulations under various scenarios. Results reveal that only a few BEVs and HEVs are economical without subsidies when compared with ICEVs in all considered scenarios. The subsidies only barely change the results. The mini and the medium vehicle segment remain uneconomical in all tested scenarios. Overall, we conclude that subsidies support the competitiveness of BEVs, but fail to lead to favorable TCOC within several vehicle segments and several tested annual mileages.  相似文献   

15.
This paper assesses the potential energy profile impacts of plug-in hybrid electric vehicles and estimates gasoline and electricity demand impacts for California of their adoption. The results are based on simulations replicating vehicle usage patterns reported in 1-day activity and travel diaries based on the 2000–2001 California Statewide Household Travel Survey. Four charging scenarios are examined. We find that circuit upgrades to 240 V not only bring faster charging times but also reduce charging time differences between PHEV20 and PHEV60; home charging can potentially service 40–50% of travel distances with electric power for PHEV20 and 70–80% for PHEV60; equipping public parking spaces with charging facilities, can potentially convert 60–70% of mileage from fuel to electricity for PHEV20, and 80–90% for PHEV60; and afternoons are found to be exposed to a higher level of emissions.  相似文献   

16.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

17.
The taxation of gasoline is characterized by large variability across countries and recent research has analyzed existing gasoline tax levels from an economic efficiency point of view focusing on conventional internal combustion engine vehicles. Most studies find that existing fuel tax rates do not coincide with economically efficient levels. As long as policymakers do not take action to reduce the resulting efficiency gap, there will be an ongoing welfare loss to the economy. However, the composition of passenger car fleets will probably be subject to fundamental changes in the (near) future due to the emergence of electric mobility. This raises the question of whether the mismatch between current and efficient fuel taxation will persist, shrink, or even exacerbate under emerging electric mobility. This paper aims at answering this question by determining the structure and level of optimal gasoline taxes in the presence of electric vehicles (EVs). First, the optimal (nationwide) gasoline tax is analytically derived employing a general equilibrium approach. It is shown that differences in traffic related marginal external costs among fuel powered cars and EVs affect the corrective Pigouvian component of the optimal gasoline tax while a differential tax treatment influences the fiscal rational of the tax. Second, the model is applied to Germany using differentiated data on e.g. external costs and behavioral responses. Under a wide range of scenarios, the present analyses indicate a strong relationship between optimal gasoline taxes and electric mobility, calling for a downward adjustment of efficient gasoline taxes. The effect is mainly driven by financial incentives for purchasing and using EVs. Since fuel is likely to be undertaxed in many countries, the emergence of electric mobility will therefore close the gap between gasoline taxes in place and economically efficient taxes. On the other side, it will increase the efficiency gap in those countries where gasoline is overtaxed. This also has important implications for policy concerned with environmental objectives. Pushing electric mobility seriously and at the same time taxing gasoline efficiently could actually prevent sufficient CO2 emission savings. However, at least in the case of Germany, even a downward adjusted optimal gasoline tax under electric mobility is likely to be higher than the current (non-optimal) tax.  相似文献   

18.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

19.
This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers’ within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.  相似文献   

20.
This paper describes a life cycle model for performing level-playing field comparisons of the emissions, costs, and energy efficiency trade-offs of alternative fuel vehicles (AFV) through the fuel production chain and over a vehicle lifetime. The model is an improvement over previous models because it includes the full life cycle of the fuels and vehicles, free of the distorting effects of taxes or differential incentives. This spreadsheet model permits rapid analyses of scenarios in plots of trade-off curves or efficiency frontiers, for a wide range of alternatives with current and future prices and levels of technology. The model is available on request.The analyses indicate that reformulated gasoline (RFG) currently has the best overall performance for its low cost, and should be the priority alternative fuel for polluted regions. Liquid fuels based on natural gas, M100 or M85, may be the next option by providing good overall performance at low cost and easy compatibility with mainstream fuel distribution systems. Longer term, electric drive vehicles using liquid hydrocarbons in fuel cells may offer large emissions and energy savings at a competitive cost. Natural gas and battery electric vehicles may prove economically feasible at reducing emissions and petroleum consumption in niches determined by the unique characteristics of those systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号