首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对永磁电动悬浮系统的垂向动态稳定性问题, 研究了永磁电动悬浮系统的临界稳定特性; 提出了一种永磁铁加常导线圈混合构成的新型Halbach阵列, 通过在永磁体表面缠绕有源常导线圈, 实现了永磁电动悬浮系统阻尼的主动控制, 并对比了新型Halbach阵列与其他2种主动电磁阻尼控制方案; 建立了新型Halbach阵列永磁电动悬浮系统垂向动力学模型, 并采用经典PID闭环控制方法设计了悬浮控制器, 分别在无外界干扰、外界扰动力干扰和轨道不平顺干扰3种情况下仿真分析了该系统的垂向动态稳定性。研究结果表明: 永磁电动悬浮系统在扰动力作用下将进行等幅震荡而不能稳定悬浮, 连续扰动力干扰下甚至可能撞轨; 提出的新型Halbach阵列具有磁场耦合计算方便、力调节范围大的优点; 设计的悬浮控制器能使系统稳定悬浮于额定气隙0.03 m的平衡位置, 且线圈电流为0, 不产生损耗, 仿真分析所得系统悬浮气隙和线圈电流与理论分析结果的相对误差小于0.01%;当出现轨道不平顺干扰时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流仍为0, 实现了永磁电动悬浮系统的零功率平衡; 当外界扰动力为±1 500 N时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流分别为29.68和-30.40 A, 表明新型Halbach阵列永磁电动悬浮系统能够实现垂向动态稳定。   相似文献   

2.
电动悬浮列车具有速度高、悬浮间隙大、安全系数高等优点,在超高速磁悬浮列车领域具有十分光明的应用前景.车载超导磁体是超导电动悬浮列车的核心组成部分之一,其服役可靠性是列车安全运行的重要基础.本文系统地阐述国内外电动悬浮列车的发展历史及现状,针对国内外电动悬浮系统中车载超导磁体的结构和技术方案进行对比和总结.高温超导磁体技术已经成为超导电动悬浮领域的重要发展方向,在列车行驶过程中车载超导磁体系统的热稳定性和振动稳定性是影响其可靠服役的重要因素.高温超导磁体闭环运行技术、轻量小型化低温系统结构设计、高强度低漏热支撑结构设计等将是未来超导电动悬浮系统中车载超导磁体需要重点研究和解决的关键技术难题.  相似文献   

3.
在串级控制的电磁悬浮系统中,电流环的响应速度和精度对整个悬浮控制起着至关重要的作用. 为了加快悬浮系统电流环的响应速度以及减小跟随误差,基于TMS320F28335设计了EMS (electromagnetic suspension system)的数字单周期控制(digital one-cycle control,D-OCC)电流控制器. 以悬浮斩波器为研究对象,建立起D-OCC的数学模型,对额定悬浮工作点处斩波器电流的D-OCC算法进行了详细推导;通过Simulink平台对算法进行仿真验证,并将D-OCC的电流环投入到实际悬浮系统中进行悬浮实验. 实验结果表明:对频率为5 Hz,幅值为3 A的方波信号进行跟随时,传统PID控制在方波上升沿和下降沿均存在一定的超调,且稳定后存在不小于20 mA的跟随误差,D-OCC在调节过程中不存在超调,且稳定后没有跟随误差,说明D-OCC算法能够实现对指令电流快速、准确跟随;采用电流环D-OCC的悬浮系统起浮过程需要约0.4 s的调整时间,并且悬浮稳定后可以克服50%荷载扰动和1.5 mm气隙扰动,说明该方法可以实现系统稳定悬浮,且具有较强的鲁棒性能.   相似文献   

4.
对高速道岔弹性铁垫板的伤损发展及刚度演变过程进行了跟踪试验;基于实测数据,建立了车辆-道岔耦合动力学计算模型,分析了弹性铁垫板刚度劣化对车辆-道岔动力性能的影响,研究了刚度劣化状态下高速道岔对进一步提升运营速度的适应性。研究结果表明:随着高速道岔弹性铁垫板的长期使用,出现橡胶老化、开裂、分离、脱落,铁件锈蚀等伤损;有砟、无砟道岔铁垫板动静刚度比变化均较小,但静刚度均有所增大,有砟道岔铁垫板静刚度初期即有明显变化,上道3年增幅可超60%;普通地带无砟道岔铁垫板静刚度最大可增加30%,刚度变化小于有砟道岔;高寒、多风沙地带无砟道岔铁垫板静刚度变化较快;高速道岔弹性铁垫板刚度的逐渐劣化会对动力性能产生影响;刚度劣化状态下岔区钢轨变形减小,轮轨动力冲击作用增大,安全性参数均有提高;车辆和轮对的运动轨迹基本不变,但轮对振动加剧,车体振动也有加剧的趋势;高速道岔弹性铁垫板刚度劣化状态下,运营速度的提升会导致车辆-道岔系统动力性能进一步劣化,安全和疲劳性能裕量进一步减小,刚度劣化会使高速道岔对提速的适应性下降。扩大提速范围须重点关注道岔区弹性铁垫板刚度劣化情况,对弹性铁垫板进行适当更换,确保行车安全平稳。   相似文献   

5.
为了研究不同控制方法下永磁电磁混合Halbach阵列的电动悬浮稳定性,首先,利用电磁场理论对系统悬浮力2D解析式进行了推导,并搭建有限元模型对其进行了验证;其次,建立了系统垂向动力学模型,设计了基于气隙反馈的定气隙PID控制器和变气隙PID控制器;最后,仿真分析了系统受到外界扰动时的悬浮气隙及线圈电流波形. 研究结果表明:当系统受到1 mm轨道沉降扰动时,两种控制器均能使系统稳定运行于额定状态,且动态过程一致;当系统受到 ±1000 N扰动力作用时,定气隙PID控制器可使系统稳定悬浮于额定气隙30 mm位置,且稳态线圈电流分别为2.12 A/mm2和 ?2.17 A/mm2,变气隙PID控制器则使系统分别稳定悬浮于28.5 mm及31.6 mm位置,且稳态线圈电流均为0.   相似文献   

6.
创建组合工况,采用加速度加载的仿真方法,基于变密度法和“包裹面”方案对电动物流车蓄电池支架进行结构拓扑优化,并通过尺寸优化对支架进行轻量化设计,得到符合性能和轻量化要求的结构设计方案。仿真结果表明,优化后的蓄电池支架整体刚度提高了10.5%,总质量降低了29.2%.  相似文献   

7.
针对电磁悬浮列车悬浮控制器因轨道不平顺所引发的未知非线性力和传递函数不确定问题,提出一种基于模型参考自适应的自学习控制方案,控制算法中可调参数根据系统状态、误差和时间调整,使悬浮间隙稳定在恒定数值;学习率根据目标间隙误差大小动态调节,避免可调参数调节过慢,同时保证在稳定悬浮时间隙波动更小;通过李雅普诺夫稳定性判据证明了模型参考自适应控制系统的稳定性;通过MATLAB/Simulink对所提出的控制方案进行仿真.研究结果表明:自学习模型参考自适应控制算法间隙的均方根误差为0.12,设定合适的可调参数初始值并对其限幅能够提升控制器的鲁棒性;在单悬浮架测试时,控制器获取到加速度信号,所提出算法的上升时间和调节时间分别为1.21 s和2.04 s,该方法学习率可动态调节,提升了控制器的适应能力.  相似文献   

8.
为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车...  相似文献   

9.
为了研究EMS型磁浮列车起浮后与轨道相互耦合发生的自激振动对车辆安全性、舒适性造成的影响,建立了单磁铁悬浮系统的车体-悬浮架-轨道的动力学模型.分析了车-轨系统的稳定性及悬浮控制器和系统各主要参数对振动的影响,提出了系统各参数和稳定性关系的表达式,讨论了运用瞬时最优控制算法抑制车-轨自激振动的具体方法.数值仿真了在3组不同系统参数条件下瞬时最优控制对于自激振动的抑制效果.研究结果表明:车辆结构、悬浮控制器、轨道各主要参数在车-轨自激振动中相互影响;当仿真系统起浮10 s时,悬浮气隙振幅分别减少了59%、62%、5%,轨道振幅分别减少48%、94%、73%,表明了控制方法的有效性.   相似文献   

10.
磁悬浮列车发展现状与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
作为新型轨道交通技术的典型代表,磁悬浮交通具有无机械接触磨损、运行速度高、安全可靠、环境友好等优点,经过60年的发展,正逐渐走向成熟. 本文首先对国内外磁悬浮列车的发展历史作了简要回顾;然后,从结构原理、核心技术和应用场景等方面对永磁悬浮、电磁悬浮、电动悬浮和超导钉扎悬浮4大类磁悬浮交通系统进行了详细介绍,对其悬浮特点、悬浮间隙、磁力计算、驱动技术与技术成熟度等进行了阐述,并指出发展时速600公里级高速磁浮列车亟须解决的试验平台搭建、电机控制策略、紧急制动、线路维护、无线传能、无线通信、气动噪声、磁浮道岔等8个关键问题;最后,对超高速真空管道磁悬浮交通系统的研究进展以及需要研究的课题进行了探讨与展望.   相似文献   

11.
针对传统故障诊断方法难以有效检测浮置板轨道钢弹簧损伤这一挑战性问题,提出了一种基于一维残差卷积网络的损伤检测方法;建立了车辆-浮置板轨道耦合动力学模型,得到了多种工况下列车通过导致的浮置板振动响应数据集;利用残差卷积网络对不同损伤情形下的振动响应进行特征提取和数据分类,实现了对损伤钢弹簧的准确定位;研究了残差卷积网络在不同传感器布置方案上的检测性能,分析了损伤钢弹簧和传感器之间的复杂位置关系对检测性能的影响规律,优化并确定了经济可靠的传感器布置方案。研究结果表明:传感器的位置越靠近浮置板中部,残差卷积网络对不同损伤情形下的数据分类准确性和鲁棒性越好;传感器的布置数量增多,损伤检测方法的性能也随之改善,但传感器过多地集中于浮置板中部并不会带来显著的性能提升;在浮置板中部的钢弹簧损伤比在浮置板端部的钢弹簧损伤更难识别;损伤检测方法在全覆盖式布置方案下达到了99.11%的分类准确率,对复杂多变的检测情景具有良好适应性,而优化后双传感器布置方案和三传感器布置方案的分类准确率分别达到了98.23%和98.96%,优化后传感器布置方案具有良好的检测性能,同时也保持了损伤检测方法对复杂情景的适应性。   相似文献   

12.
针对城轨供电系统采用平铺运行图进行负荷过程仿真分析与实际负荷过程差别大,不能准确反应供电系统运营阶段的诸多问题,将运行图中各列车运行时分作为约束条件,建立列车定时节能运行的指标函数,以提高仿真模型准确性;基于固定阶梯级目标速度搜索算法优化列车操纵序列,还原多列车具有电气信息的运行轨迹;以实迹运行图为驱动,实现了供电系统正常运行与异常情形下的负荷过程仿真分析. 算例分析结果表明:基于实迹运行图的仿真结果与实测牵引变电所负荷过程曲线的Pearson相关系数在0.89以上,负荷过程特征值仿真与实测的最大误差不超过6.85%,较平铺运行图仿真结果准确度最高可提升12.91%.   相似文献   

13.
高速磁浮悬浮架柔性特征对曲线通过性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究高速磁浮悬浮架小曲线通过动力学性能,考虑高速磁浮悬浮架柔性振动,建立悬浮架有限元模型,并计算其弹性模态,建立高速磁浮整车车辆动力学模型;应用同济大学磁浮试验线线路条件、试验速度曲线及拟合的轨道不平顺,分析了悬浮架柔性振动对悬浮、导向电磁铁间隙、电磁力的影响;同时,建立了刚性悬浮架动力学模型与之对比. 研究结果表明:R400小曲线通过时,电磁铁动力学性能受悬浮架柔性振动的影响较大,两种模型的导向力相差约12.5 kN,悬浮力相差约6.0 kN;通过试验仿真比较,考虑悬浮架柔性的计算结果更接近于实测结果;悬浮架垂向和横向振动的主频分别为10.4 Hz和13.2 Hz,分别与前后悬浮框相对点头、反相摇头模态频率相近;在研究控制参数优化、悬挂参数优化、运行稳定性等高速磁浮关键问题时应考虑悬浮架的柔性振动.   相似文献   

14.
为改善高速列车横风下运行的动力学性能, 提高运行平稳性和安全性, 以轮轴横向力和轮重减载率为优化目标, 对高速列车动力学模型的悬挂参数进行多目标优化设计; 建立高速列车多体动力学参数化模型, 依照大风限速标准, 加载列车在横风下以不同速度运行的气动力数据, 选取了止挡间隙、一系悬挂纵向和垂向刚度、二系悬挂纵向和垂向刚度、一系垂向减振器刚度、二系横向和垂向减振器刚度、抗蛇形减振器刚度及阻尼11个变量; 搭建高速列车动力学模型优化平台, 对高速列车多体动力学参数化模型的设计参数与轮轴横向力和轮重减载率的相关性进行分析, 得到列车各悬挂参数对轮轴横向力和轮重减载率的影响趋势; 基于相关性结果, 采用NCGA、AMGA和NSGA-Ⅱ遗传算法对高速列车的动力学参数进行优化设计。分析结果表明: 采用NSGA-Ⅱ算法的优化结果最为理想; 与轮轴横向力和轮重减载率相关性最大的参数为抗蛇形减振器刚度, 为反效应; 优化后列车的动力学性能得到明显的改善, 轮重减载率从原始的0.78整体优化到0.63以下, 且最小可以优化到0.49, 最高可降低37.2%;轮轴横向力从原始的16.8 kN整体优化到9.6 kN以下, 且最小可以优化到5.79 kN, 最高可降低65.5%;得到了优化目标的Pareto前沿最优解, 确定了列车各动力学参数设计变量的最优解集, 并对最优解集在其他列车速度和风速组合下的运行工况进行验证, 适用性较好。   相似文献   

15.
为了定量分析存在方向图误差、位置误差、互耦误差、通道误差4种阵列误差的情况下,非合作无源探测系统的快速测向性能,通过矩阵范数与泰勒级数等理论分析,估计了无阵列误差时目标方向映射角的偏差范围,研究了阵列误差对阵列波束形成的影响,计算了存在阵列误差时目标方向映射角的估计偏差范围,得出并证明了较小阵列误差对方向映射角的估计方差几乎无影响的结论.仿真结果表明:阵列误差引起的最大波束幅度相对偏差为6.5%、信噪比为-20 dB时,16元等距线阵的最大方向映射角估计偏差与均方差均小于0.015 rad,与理论分析结果相符.  相似文献   

16.
针对整流性负载呈现出阻感特性引起感应电能传输(IPT)系统失谐,为了保持谐振频率,提出一种基于实测负载阻抗的动态补偿技术.该技术利用短时傅立叶变换得到负载的电流电压相量并计算出负载的感抗,通过动态调整电容阵列静态开关的方法改变其容值,达到补偿负载感抗目的.在阻感负载情况下,分别对浮频调谐控制方法以及动态电容阵列补偿方法进行实验比较,结果表明:相对浮频调谐控制方法,当负载为100和50 Ω时,本动态调谐方法传输的有功功率提高了12.1%和7.3%,且能保持初级谐振电路频率稳定,开关器件工作在软开关状态.   相似文献   

17.
基于自适应非奇异终端滑模的悬浮控制策略   总被引:1,自引:0,他引:1       下载免费PDF全文
针对采用传统线性滑模控制的电磁悬浮系统存在响应速度慢以及抗干扰能力差的问题,提出了一种基于自适应非奇异终端滑模的悬浮控制方法,该方法将自适应控制引入到终端滑模控制,结合滑模控制对扰动不敏感的优点,利用自适应控制对滑模趋近律系数进行在线自适应调节,改善悬浮系统的动态性能. 首先,建立了电磁悬浮系统数学模型;然后,利用李雅普诺夫稳定理论证明了所设计控制器的稳定性;最后,进行了仿真和实验验证. 实验结果表明:自适应非奇异终端滑模对信号跟踪具有更快的响应速度和更小的稳态误差,对峰峰值为2 N的正弦或锯齿干扰力气隙波动可限定在0.2 mm以内,进行0.1 kg加减载实验时气隙波动为0.6 mm,各项性能均优于终端滑模和线性滑模.   相似文献   

18.
为了提升浮置板轨道的减振效果,阻碍浮置板垂向振动能量向轨下基底的传播,提出了一种基于声子晶体局域共振机理的浮置板轨道隔振器. 运用有限元方法研究了声子晶体隔振器的局域共振带隙特性,并验证了带隙频率范围内声子晶体隔振器对振动的抑制作用;计算了声子晶体隔振器的垂向刚度,建立了三维声子晶体隔振器浮置板轨道有限元模型;计算了整体结构的力传递率与基础加速度响应,并与传统钢弹簧浮置板的计算结果进行了对比. 研究结果表明,声子晶体隔振器存在声子晶体局域共振带隙,对50~150 Hz频带内的振动有抑制作用;声子晶体隔振器与传统钢弹簧垂向静刚度相近,均为6.0 kN/mm;保留了钢弹簧浮置板轨道的低固有频率隔振性能,并且在50~120 Hz频带具有带隙抑制特性,在51 Hz附近力传递率可减小10 dB左右;基础加速度响应在51~150 Hz频带内明显小于普通钢弹簧浮置板轨道,其中51~60 Hz频带内基础加速度相比钢弹簧浮置板轨道减小30%左右. 因此声子晶体隔振器有助于提高浮置板轨道的减振性能.   相似文献   

19.
针对无轴承永磁同步电机电感参数难以通过实验准确获得的问题,采用有限元分析方法研究了四极悬浮控制二极表贴式无轴承永磁同步电机的电感特性.根据无轴承永磁同步电机的工作原理,给出了静态电感和增量电感的定义;在此基础上研究了转矩绕组和悬浮力绕组的静态电感特性,并通过3/2变换得到了在转子两相旋转坐标系下的交直轴静态电感;最后以转矩绕组为例,研究其增量电感,并与其静态电感进行了比较.有限元仿真结果表明:无轴承永磁同步电机增量电感比其静态电感小6%,验证了理论分析的正确性.   相似文献   

20.
为研究中低速磁浮道岔主动梁关键参数对车岔耦合振动的影响,进行了各工况下磁浮道岔主动梁的模态测试,并建立了考虑道岔主动梁弹性振动的车岔耦合动力学模型,对悬浮稳定性进行了分析. 通过仿真与试验对比,对道岔主动梁的模态特征进行了修正,并基于修正后的车岔耦合动力学模型,研究了磁浮道岔主动梁不同设计参数对悬浮稳定性的影响规律. 研究结果表明:中间台车采用50 MN/m的弹性约束进行等效,能够达到比较理想的误差要求;二台车支撑方案相比三台车支撑方案,更容易避开磁浮车岔耦合的共振频率;随着主动梁一阶垂向弯曲频率的不断增大,悬浮控制参数的稳定区间越小,当道岔主动梁垂向弯曲频率大于12 Hz时,更容易出现车岔耦合振动现象;随着道岔主动梁刚度的增加,悬浮控制参数的稳定范围越小;增加道岔主动梁结构阻尼比不能解决车岔耦合共振问题,只能降低振动幅值大小;随着道岔主动梁线密度的增大,越不容易出现车岔共振现象,当线密度低于1 500 kg/m时,悬浮稳定区间将急剧下降;中间台车的等效支撑刚度越大,控制参数的稳定区间越小,但影响幅度不大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号