首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>为降低客车车体一阶弯曲振动,日本铁道综合技术研究所开发了车体减振系统,这是由一系弹簧悬挂装置的减振控制研究人员利用新干线电动车,经运行试验,确认了该系统有良好的减振效果。不过这些试验都是在空车状态下进行的。通常,随着乘客数量的不同,车体的弹性振动特性会发生改变,这与单纯地装载重物(如铁块)的情况不同。因此,由于乘客数量导致的车体振动特性的变化,有可能对这种减振系统的减振效果造成影响。基于这个因  相似文献   

2.
近年来的铁道车辆上,有时会显著地发生车体垂向弹性振动。特别是其中的车体1阶弯曲振动因对乘坐舒适度的影响较大,所以日本对低1阶弯曲振动的方法进行了研究和试验。但这些减振对策无论有无效果,无一例外都是用对车体直接施加作用的方法来进行减振。  相似文献   

3.
在钢轨轨腰粘贴钢轨阻尼器能有效降低高频噪声与振动.为探讨钢轨阻尼器的减振降噪效果,在北京南站选取试验段安装阻尼器,对有阻尼器和无阻尼器的钢轨进行了测试分析对比.试验结果表明,在测试条件下,钢轨安装阻尼器后列车行驶噪声的等效声级平均降低了3.6 dBA;钢轨的振动加速度级平均降低了6.7 dB;站台的振动加速度级平均降低了9.3 dB;减振降噪效果明显.  相似文献   

4.
介绍了利用压电元件与支路在减轻铁道车辆车体弯曲振动方面的研究成果.采用车体模型,通过激振试验确认了减振效果,并指出了今后实用化中需要解决的有关课题.  相似文献   

5.
为了研究MTMD(多重调谐质量阻尼器)对简支箱型梁低频振动的控制特性,首先通过对箱梁结构进行模态分析确定受控模态,利用经典扩展定点理论进行TMD(调谐质量阻尼器)的最优参数设计,并基于位移振幅最小化的原则,建立评价函数分别进行MTMD的最优参数设计;进而利用有限元分析软件ANSYS进行谐响应分析,研究了TMD的设置个数对减振效果的影响,并针对阻尼器的质量改变、刚度改变和阻尼改变进行了参数敏感性分析。研究结果显示:在附加质量相同的情况下,MTMD的制振效果随着设置阻尼器个数的增加而增强,但个数增至一定程度后,减振效果的提升不再明显;MTMD在质量、刚度参数发生偏移时的制振稳定性随TMD个数的增加而减弱,阻尼参数偏移时的制振稳定性随TMD个数的增加而增强。  相似文献   

6.
针对城市轨道车辆车体振动的问题,建立了含被动式吸振器的车轨垂向振动模型,指出了传统二自由度被动式吸振器应用在轨道车辆上的局限性,提出了适用于城市轨道车辆车体被动式吸振器减振设计方法,利用Sperling平稳性指标验证了被动式吸振器在不同速度和载客量工况下的减振效果,探讨了被动式吸振器的安装可行性.研究结果表明:传统被动...  相似文献   

7.
斜拉索-阻尼器系统的动力特性分析   总被引:7,自引:0,他引:7  
斜拉桥拉索的大幅振动越来越引起人们的关注 ,目前减振的主要手段是安装阻尼器 .本文推导了由模态坐标表示的斜拉索 阻尼器系统运动方程 ,对拉索垂度、弯曲刚度、阻尼器位置和阻尼系数等因素对拉索 阻尼器系统的动力特性的影响进行了分析 ,所得结果对斜拉减振阻尼器优化设计具有一定指导意义 .  相似文献   

8.
以高速列车变压器为例,基于隔振理论与车下设备振动特性,提出了变压器减振设计方案,并进行减振效率分析。通过振动测试试验,对变压器减振效果进行验证,结果表明当变压器独立悬挂频率设计为9 Hz时,变压器振动频率可以有效避开车体的模态频率,且振动衰减效果明显。  相似文献   

9.
文章针对不锈钢制车体激光焊接区的强度评价法、复动式车钩缓冲器、减轻车体挠曲振动方法、带轴减振器的车体减振系统以及不锈钢车体的碰撞安全性等5个专题,介绍了车辆结构技术研究部的研究成果,阐述了技术发展动向。  相似文献   

10.
从乘坐舒适度方面看,车体弯曲振动的减振措施主要针对车体本身,本研究包括了转向架。车体与转向架间采用的牵引装置等的参数对车体影响很大,优化这些参数对减小弯曲振动是有效的。  相似文献   

11.
高速动车组高速运行时,振动、冲击及气动效应复杂,随着动车组速度的不断提升,侧墙结构振动问题越来越显著。为了解决高速动车组高速行驶时车体侧墙蒙皮的振动问题,提出一种基于粒子阻尼技术的高速动车组侧墙蒙皮设计方法,能够在列车高速行驶时提高它的减振特性。首先建立侧墙结构模型,基于侧墙结构的动力学特性,通过模态分析得到侧墙各阶固有频率及其对应的振型从而确定粒子阻尼器的最佳安装位置。然后对粒子阻尼器的外观和结构进行设计以符合安装要求,再基于离散元理论,通过前面模态分析得出的频率以及阻尼器安装位置建立侧墙结构粒子阻尼器的能量耗散模型,分析阻尼器粒子材质、粒子粒径和粒子填充率对侧墙系统耗能的影响,比较各种配置方案最终耗能值的大小,从而得出粒子阻尼器的最佳配置方案。通过动力学分析和离散元模拟发现,设计粒子材质为铁基粒子、粒径为2 mm,填充率为95%的粒子阻尼器耗能值最大,减振效果最好。最后搭建试验台进行验证。试验结果表明:侧墙结构敏感区域安装仿真所设计粒子阻尼器减振效果平均可达65%以上,各阶频率对应峰值降幅明显,证明了粒子阻尼在高铁侧墙中应用的有效性。研究成果为动车组侧墙蒙皮的减振降噪提供一种新的思...  相似文献   

12.
为减小车体弹性振动,保护车下悬吊设备,研究了车体和车下悬吊设备的耦合振动关系,优化车辆动力学性能。考虑车体的弹性结构,建立车体与车下悬吊设备的刚柔耦合动力学仿真模型,对比分析了车下悬吊系统在被动控制方案和基于天棚阻尼的半主动控制方案下对车体弹性振动的影响,并分析了合理参数匹配的重要性。此外,以车下设备的质量为例研究了对半主动控制效果的影响。研究结果表明:在合理的参数匹配下,半主动控制方案能够有效降低车体的弹性振动;当车下设备质量较大时,半主动控制方案优于被动控制,且在一定范围内随质量增大减振效果更加明显。  相似文献   

13.
日本高速列车先进技术的近期研究与发展(续完)   总被引:1,自引:1,他引:0  
2 .2 .5 车体间的抗摇头减振器在2 0世纪90年代初,研究人员就讨论了是否可以在车体连接处安装2个纵向阻尼器来限制摇头振动,2个阻尼器分别位于车体连接处的左右两侧。1982年,在宫崎试验线上成功实现了采用抗摇头减振器来防止3节式磁悬浮试验列车(MLU 0 0 1)振动的设想。在车体  相似文献   

14.
由于某些线路的建设标准较低,轨道的不平整度大,导致旅客的乘车舒适度下降,要解决这一问题,须减轻车体两侧的垂直振动。本文介绍了某型观光列车所搭载的垂直振动控制系统的开发经过及其结构,并详述了由此带来的减振效果。  相似文献   

15.
试验分析了中低速磁浮交通试验线车岔耦合振动特性。通过采用增加台车、沙袋、液体质量双调谐阻尼器等方式进行了多次对比测试。结果表明,采用台车和沙袋相结合的方式或采用液体质量双调谐阻尼器,都能有效地抑制车岔的耦合振动。为得到稳定的阻尼减振效果,在道岔主动梁上采用多组液体质量双调谐阻尼器作为工程化应用的吸能装置,成功解决了车岔耦合振动问题,为中低速磁浮交通的工程化应用和推广积累了经验。  相似文献   

16.
研究目的:磁流变阻尼器(M agnetorheological Damper,简称MR阻尼器)是一种高性能和智能化的减振装置。本文为了让相关人员了解有关磁流变阻尼器的研究动态。研究方法:本文介绍了MR阻尼器的半主动控制技术的研究现状,综述了磁流变流体特点、磁流变阻尼器的力学模型、半主动控制策略等。研究结果:磁流变阻尼器能够提供可以调节的阻尼力,也是一种比较理想的半主动控制装置。可在工程应用方面获得发展。  相似文献   

17.
为解决高速车车体悬挂部件牵引变压器、变流器及蓄电池等设备的振动,设计了橡胶减振器用以对振动设备进行减振,以理论分析与工程化运用相结合,分析橡胶减振器与变压器和车体联接的振动关系,刚度及阻尼性能匹配等,设计合适的减振器参数消除变压器与车体的振动。  相似文献   

18.
为提高传统线性调谐质量阻尼器在结构地震响应控制中的适用性,本文基于形状记忆合金(Shape Memory Alloy, SMA)超弹性能,提出一种新型非线性SMA调谐质量阻尼器,并将其应用于地震激励下结构动力响应控制。采用等价线性化方法,建立适用于结构动力分析的SMA简化折线模型,并利用MATLAB中Simulink可视化仿真工具进行新型非线性SMA调谐质量阻尼器及线性调谐质量阻尼器控制单自由度结构地震动响应的信息化建模仿真分析。仿真结果表明:新型非线性SMA调谐质量阻尼器具有更为稳定、更加有效的减振效果;在不同地震波作用下,新型非线性SMA调谐质量阻尼器可有效降低结构位移响应和加速度响应。  相似文献   

19.
车下设备连接参数对车体振动特性影响研究   总被引:1,自引:0,他引:1  
通过采用模态叠加法建立其对应的广义坐标方程,建立车体和车下设备系统耦合振动的简化模型,仿真分析某高速列车车下设备与车体系统的耦合振动特性。针对设备质量、安装刚度及安装阻尼等参数的变化,通过仿真计算得出了设备结构参数对系统振动响应的影响曲线。根据数值分析结果,对车体及车下设备减振设计提出了一些措施。  相似文献   

20.
由于高速化、降低路基振动、节能、低成本等要求,车辆进行了轻量化和结构简化,但随之而来的车体垂向振动平稳性方面出现了引人注目的问题。影响平稳性的车体垂向振动可以大致划分为刚体振动(支承车体的空气弹簧上方车体自身不变形的振动)和车体弯曲振动(车体一边弯曲变形一边振  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号