首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In 2011, the European Pollutant Release and Transfer Register (E-PRTR) inventory of diffuse emissions became available, providing data on a range of atmospheric emissions at a 5 km resolution across Europe. The data are produced from spatially disaggregated emissions totals for countries, and must be validated before being used at a sub-national level. The UK government maintains a 1 km resolution emissions inventory based on a bottom-up methodology by which a validation is possible. The UK National Atmospheric Emissions Inventory data are used to assess at what geographic scale the new E-PRTR data might be most useful. This paper compares the two data sets and estimates city-level transportation CO2 emissions for 149 EU cities. We find that at a functional boundary level the two datasets match well.  相似文献   

2.
Temperature-controlled transport is needed to maintain the quality of products such as fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a considerable part of global emissions. Temperature-controlled transportation exhausts even more emissions than ambient temperature transport because of the extra fuel requirements for cooling and because of leakage of refrigerant. The transportation sector is under pressure to improve both its environmental and economic performance. To explore opportunities to reach this goal, the Load-Dependent Vehicle Routing Problem (LDVRP) model has been developed to optimize routing decisions taking into account fuel consumption and emissions related to the load of the vehicle. However, this model does not take refrigeration related emissions into account. We therefore propose an extension of the LDVRP model to optimize routing decisions and to account for refrigeration emissions in temperature-controlled transportation systems. This extended LDVRP model is applied in a case study in the Dutch frozen food industry. We show that taking the emissions caused by refrigeration in road transportation can result in different optimal routes and speeds compared with the LDVRP model and the standard Vehicle Routing Problem model. Moreover, taking the emissions caused by refrigeration into account improves the estimation of emissions related to temperature-controlled transportation. This model can help to reduce emissions of temperature-controlled road transportation.  相似文献   

3.
This article presents the results of a scenario-based study carried out at the European Commission’s Joint Research Centre aimed at analyzing the future growth of aviation, the resulting fuel demand and the deployment of biofuels in the aviation sector in Europe. Three scenarios have been produced based on different input assumptions and leading to different underlying patterns of growth and resulting volumes of traffic. Data for aviation growth and hence fuel demand have been projected on a year by year basis up to 2030, using 2010 as the baseline. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, the type of aircrafts, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The target of the European Advanced Biofuels Flightpath to ensure the commercialization and consumption of 2 million tons of sustainably produced paraffinic biofuels in the aviation sector by 2020, has also been taken into account. Results regarding CO2 emission projections to 2030, reveal a steady annual increase in the order of 3%, 1% and 4% on average, for the three different scenarios, providing also a good correlation compared to the annual traffic growth rates that are indicated in the three corresponding scenarios. In absolute values, these ratios correspond to the central, the pessimistic and the optimistic scenarios respectively, corresponding to 360 million tonnes CO2 emissions in 2030, ranging from 271 to 401 million tonnes for the pessimistic and optimistic scenarios, respectively. This article also reports on the supply potential of aviation biofuels (clustered in HEFA/HVOs and biojet) based on the production capacity of facilities around the world and provides an insight on the current and future trends in aviation based on the European and national policies, innovations and state-of-the art technologies that will influence the future of sustainable fuels in aviation.  相似文献   

4.
Nowadays, evaluating CO2 emissions efficiency and its marginal abatement cost in transportation sectors has been a hot topic. However, while evaluating the CO2 marginal abatement cost using data envelopment analysis approach, the weak disposability of CO2 may imply positive abatement cost, which undoubtedly violates our common sense. To obtain non-positive marginal abatement cost, CO2 emissions should be treated as an input. To reconcile this contradiction, this paper intends to propose a global, directional distance function model based on previous study to investigate the productivity, economic efficiency, CO2 emissions efficiency, and marginal abatement cost of the China’s regional transportation sectors during 2007–2012. The results show that: (1) the productivity, economic efficiency and CO2 emissions efficiency of different regions differ widely. More specifically, the coastal areas of south China perform better than the other areas in terms of productivity, economic efficiency, and CO2 emissions efficiency. (2) Generally, the economic efficiency is greater than CO2 emissions efficiency, which is relatively low in most areas. (3) A negative correlation is found between CO2 emissions efficiency and its marginal abatement cost. For a 1% increase in CO2 emissions efficiency, the CO2 marginal abatement cost declines by 102 Yuan (in 2004 constant price). The results imply that improving CO2 emissions efficiency plays an important role in marginal abatement cost reduction, and it also provides us a new approach to reduce abatement cost besides the technical progress.  相似文献   

5.
The increase of CO2 emissions generated by land-transport is a major policy concern of the European Union but the upward trend in transport use makes it difficult for member states to comply with Kyoto Protocol targets. This paper develops an input–output methodology to analyse the structure of CO2 emissions from land-transport and applies this to several European Union countries. It shows how production linkages between sectors and the structure of final demand affect land-transport emissions in these countries. The paper confirms the relevance of the emissions-intensity factor to explain differences in the emissions of the transport sector across countries, but also shows the importance of technology-production linkages between sectors in an economic system that has usually been neglected in the past.  相似文献   

6.
Reducing energy consumption and controlling greenhouse gas emissions are key challenges for urban residents. Because urban areas are complex and dynamic, affected by many driving factors in terms of growth, development, and demographics, urban planners and policy makers need a sophisticated understanding of how residential lifestyle, transportation behavior, land-use changes, and land-use policies affect residential energy consumption and associated CO2 emissions. This study presents an approach to modeling and simulating future household energy consumption and CO2 emissions over a 30-year planning period, using an energy-consumption regression approach based on the UrbanSim model. Outputs from UrbanSim for a baseline scenario are compared with those from a no-transportation-demand model and an Atlanta BeltLine scenario. The results indicate that incorporation of a travel demand model can make the simulation more reasonable and that the BeltLine project holds potential for curbing energy consumption and CO2 emissions.  相似文献   

7.
We estimate hourly truck traffic using period-based car volumes that are usually available from travel demand models. Due to the lack of local or regional data, default vehicle-miles traveled mix by vehicle class in mobile emission inventory models is usually used in transportation emissions inventory estimates. Results from such practice, however, are often far from accurate. Heavy-duty trucks generate orders of magnitudes higher emission rates than light duty vehicles. Vehicle classification data collected from weigh-in-motion stations in California are used to examine the performance of various forms of the method across days of week and geographic areas. We find that the models identified provide satisfactory and statistically robust estimates of truck traffic.  相似文献   

8.
This paper looks at the environmental effects of shifting from road to rail freight transportation. Little data is available to shippers to calculate the potential CO2 savings of an intermodal shift. In this paper we analyze a data set of more than 400,000 intermodal shipments to calculate the CO2 intensity of intermodal transportation as a distinct mode. Our results indicate an average intensity of 67 g of CO2 per ton-mile, but can vary between 29 and 220 g of CO2 per ton-mile depending on the specific origin–destination lane. We apply the market area concept to explain the variance between individual lane intensities and demonstrate the complexity in predicting the potential carbon savings in a switch from truckload to intermodal.  相似文献   

9.
The Asian region is considered as the most thriving region in terms of economic integration at present. Given the fact that most of the Asian countries’ commodity trade relies on maritime transport, its economic integration is expected to affect the shipping activities and consequently maritime CO2 emissions. This study develops a novel and systematic analysis on the key driving factors through which trade liberalization can influence maritime CO2 emissions. Our simulation results suggest that, depending on the level of Asian integration, global CO2 emissions may slightly fall (ASEAN+3 FTA) or even rise (ASEAN+6 FTA). The reason for the latter is that the “trade scale effect” (higher emissions due to a significant increase in trade among participating countries) outweighs the “trade structure effect” and “shipment type effect” (lower emissions as a result of an increase in intra-Asia trade and a change in commodity composition). Finally, all countries involved in the Asian integration, except Japan, will experience an increase in maritime CO2 emissions. In particular, a relatively significant increase in the maritime CO2 emissions occurs in the developing Asian countries owing to substantial trade scale effect after removing their relatively high trade barriers.  相似文献   

10.
Numerous Life Cycle Analysis of bread pointed out that wheat production and transportation have important impacts on the environment. But wheat is grown all around the world and it is not always consumed where it is produced. In this paper an analysis of the wheat movements around Europe is done, taking special attention on the Spanish situation. An optimization of wheat exchanges is done eliminating the import–export overlapping. This optimization entails a reduction of the number of trips by 34% and the CO2 emissions reduction due to transportation is calculated to be 121.175 tones. Consequently less trips, fewer trucks, less traffic and lower emissions that brings economic, social and environmental benefits.  相似文献   

11.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

12.
This paper discusses voluntary CO2 emissions reduction schemes and, in particular focuses on the voluntary plan by the Japanese airline industry. Econometric analysis identifies statistically significant improvement of 3–4% in CO2 emissions intensity (CO2/RPK) subsequent to initiation of the voluntary plan in 1998.  相似文献   

13.
This paper is the world first to investigate the CO2 impact of railway resurfacing in ballasted track bed maintenance. Railway resurfacing is an important routine maintenance activity that restores track geometry to ensure safety, reliability and utility of the asset. This study consisted of an extensive field data collection from resurfacing machineries (diesel-engine tamping machines, ballast regulators and ballast stabilisers) including travel distances, working distances, fuel consumption and construction methodologies. Fuel consumption was converted to a kg CO2/m using the embodied energies of diesel. Analyses showed that tamping machines emitted the highest CO2 emissions of the resurfacing machineries, followed by ballast regulators and ballast stabilisers respectively. Tamping machines processed 4.25 m of track per litre of diesel, ballast regulators processed 6.51 m of track per litre of diesel and ballast stabilisers processed 10.61 m of track per litre of diesel. The results were then compared to previous studies and a rigorous parametric study was carried out to consider long-term resurfacing CO2 emissions on Australian railway track. The outcome of this study is unprecedented and it enables track engineers and construction managers to critically plan strategic rail maintenance and to develop environmental-friendly policies for track geometry and alignment restoration.  相似文献   

14.
The street-network efficiency of tens of British cities in relation to transport fuel consumption and CO2 emissions are analyzed. The results show a strong linear positive correlation between length entropy and average street length, and a negative correlation between entropy and street density. Also, the results suggest that in a large city the street network is used more efficiently than in a small city, as indicated by the sublinear relations between city size (population) and the number of streets, total length of streets, and the area covered by the street network. The sublinear relation means that these parameters grow more slowly than the city size. By contrast, because a larger fraction of the street network is used at close to full capacity during considerable part of the time in a large city than a small one, the fuel consumption and the CO2 emissions show a linear relation with city size and superlinear relation with total street length. The superlinear relation means that the CO2 emissions increase faster than the total street length, a measure of the network size. Thus, large cities may be less energy efficient and environmentally friendly than small cities. In every city the street network needs to interconnect all the buildings, which requires a certain minimum size. In a small city, however, the network is used to a low capacity most of the time so that its relations to fuel consumption and the CO2 emissions are more favorable than those in a large city.  相似文献   

15.
The main purpose of this paper is to develop a bi-level pricing model to minimize the CO2e emissions and the total travel time in a small road network. In the lower level of the model, it is assumed that users of the road network find a dynamic user equilibrium which minimizes the total costs of those in the system. For the higher level of the model, different road toll strategies are applied in order to minimize the CO2e emissions. The model has been applied to an illustrative example. It shows the effects on traffic flows, revenues, total time and CO2e emissions for different numbers of servers collecting tolls and different pricing strategies over a morning peak traffic period. The results show that the CO2e emissions produced can be significantly affected by the number of servers and the type of toll strategy employed. The model is also used to find the best toll strategy when there is a constraint on the revenue that is required to be raised from the toll and how this affects the emissions produced. Further runs compare strategies to minimize the CO2e emissions with those that minimize total travel time in the road system. In the illustrative example, the results for minimizing CO2e emissions are shown to be similar to the results obtained from minimizing the total travel time.  相似文献   

16.
Transportation CO2 emissions are expected to increase in the following decades, and thus, new and better alternatives to reduce emissions are needed. Road transport emissions are explained by different factors, such as the type of vehicle, delivery operation and driving style. Because different cities may have conditions that are characterized by diversity in landforms, congestion, driving styles, etc., the importance of assigning the proper vehicle to serve a particular region within the city provides alternatives to reduce CO2 emissions. In this article, we propose a new methodology that results in assigning trucks to deliver in areas such that the CO2 emissions are minimized. Our methodology clusters the delivery areas based on the performance of the vehicle fleet by using the k-means algorithm and Tukey’s method. The output is then used to define the optimal CO2 truck-area assignment. We illustrate the proposed approach for a parcel company that operates in Mexico City and demonstrate that it is a practical alternative to reduce transportation CO2 emissions by matching vehicle type with delivery areas.  相似文献   

17.
Intermodal rail/road transportation combines advantages of both modes of transport and is often seen as an effective approach for reducing the environmental impact of freight transportation. This is because it is often expected that rail transportation emits less greenhouse gases than road transportation. However, the actual emissions of both modes of transport depend on various factors like vehicle type, traction type, fuel emission factors, payload utilization, slope profile or traffic conditions. Still, comprehensive experimental results for estimating emission rates from heavy and voluminous goods in large-scale transportation systems are hardly available so far. This study describes an intermodal rail/road network model that covers the majority of European countries. Using this network model, we estimate emission rates with a mesoscopic model within and between the considered countries by conducting a large-scale simulation of road-only transports and intermodal transports. We show that there are high variations of emission rates for both road-only transportation and intermodal rail/road transportation over the different transport relations in Europe. We found that intermodal routing is more eco-friendly than road-only routing for more than 90% of the simulated shipments. Again, this value varies strongly among country pairs.  相似文献   

18.
The sensitivity of the pollutant emissions as regards the driving speed is demonstrated using emission functions currently available from the literature. An accurate and detailed knowledge of the actual driving speeds is then fundamental for emissions estimations and inventories. However, speed information is often limited and heterogeneous. Through a European synthesis, we examine the various means of investigations: surveys, vehicle instrumentation, traffic modelling, etc.The available statistics provide a high number of reference values for passenger cars and duty vehicles by broad categories and highlight the influence of numerous factors on speed: time period, city size and area, trips origin and destination and vehicle types. Speed estimations and ranges are proposed for the driving in urban areas, on rural roads and on motorways.The significant variations of the speed according to the time of the day, to the areas of a city, and the large dispersion for a given situation raise the question of using single average values. In fact, emissions estimation can be affected by 30% by the quality of the driving speed data.  相似文献   

19.
Traffic congestion caused by traffic accidents contributes to CO2 emissions. Generally, more efficient and prompt responses to accidents lead to reduced traffic congestion as well as CO2 emissions. Here we assess the CO2 emissions impacts of freeway accidents, applies an existing model to capture spatio-temporally congested regions caused by freeway accidents. A case study for the assessment of CO2 emissions impacts of based on the results from the model is presented.  相似文献   

20.
In this paper we present a mixed-integer linear program to represent the decision-making process for heterogeneous fleets selecting vehicles and allocating them on freight delivery routes to minimize total cost of ownership. This formulation is implemented to project alternative powertrain technology adoption and utilization trends for a set of line-haul fleets operating on a regional network. Alternative powertrain technologies include compressed (CNG) and liquefied natural gas (LNG) engines, hybrid electric diesel, battery electric (BE), and hydrogen fuel cell (HFC). Future policies, economic factors, and availability of fueling and charging infrastructure are input assumptions to the proposed modeling framework. Powertrain technology adoption, vehicle utilization, and resulting CO2 emissions predictions for a hypothetical, representative regional highway network are illustrated. A design of experiments (DOE) is used to quantify sensitivity of adoption outcomes to variation in vehicle performance parameters, fuel costs, economic incentives, and fueling and charging infrastructure considerations. Three mixed-adoption scenarios, including BE, HFC, and CNG vehicle market penetration, are identified by the DOE study that demonstrate the potential to reduce cumulative CO2 emissions by more than 25% throughout the period of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号