首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

2.
Like many tourist destinations, Newport, Rhode Island relies upon high season tourist volumes for its economic health. Most visitors arrive by car, concentrated during certain hours on summer weekends, severely congesting the town’s major arteries and forcing many visitors to spend considerable time in their car. A transportation planning strategy which reduced congestion would enhance the quality of the visiting experience, increase the time visitors are able to spend in shops and at attractions, and draw additional visitors. However, identifying effective solutions requires understanding factors that affect tourists’ transit choices. We develop a conceptual model of Newport visitors’ parking and transit choices, expanding traditional transit choice models to include features such as scenery we expect to influence tourists. Using a stated preference survey of visitors, we find scenery, transit mode options and congestion are the major drivers of tourists’ parking choices. We also develop welfare estimates to enable analysis of proposed transportation plans.  相似文献   

3.
The uncertainty of an origin-destination (O-D) trip table estimate is affected by two factors: (i) the multiplicity of solutions due to the underspecified nature of the problem, and (ii) the errors of traffic counts. In this paper, a confidence interval estimation procedure for path flow estimator (PFE) is developed for assessing the quality of O-D trip tables estimated from traffic counts. The confidence interval estimation consists of two parts: (i) a generalized demand scale (GDS) measure for quantifying the intrinsic underspecified nature of the O-D estimation problem at various spatial levels, and (ii) an error bound to quantify the contribution of input errors (traffic counts) to the estimation results. Numerical results using PFE as the O-D estimator show that the proposed confidence interval estimation procedure is able to separate the two sources of uncertainty in constructing the confidence intervals at various spatial levels. Simulation results also confirm that the proposed quality measure indeed contain the true estimates within the defined confidence intervals.  相似文献   

4.
This paper introduces a model of urban freight demand that seeks to estimate tour flows from secondary data sources e.g., traffic counts, to bypass the need for expensive surveys. The model discussed in this paper, referred as Freight Tour Synthesis (FTS), enhances current techniques by incorporating the time-dependent tour-based behavior of freight vehicles, and the decision maker’s (e.g., metropolitan planning agency planner) preferences for different sources of information. The model, based on entropy maximization theory, estimates the most likely set of tour flows, given a set of freight trip generation estimates, a set of traffic counts per time interval, and total freight transportation cost in the network. The type of inputs used allows the assessment of changes in infrastructure, policy and land use. The ability of the model to replicate actual values is assessed using the Denver Region (CO) as a case study.  相似文献   

5.
Cascetta  Ennio  Russo  Francesco 《Transportation》1997,24(3):271-293
Traffic counts on network links constitute an information source on travel demand which is easy to collect, cheap and repeatable. Many models proposed in recent years deal with the use of traffic counts to estimate Origin/Destination (O/D) trip matrices under different assumptions on the type of "a-priori" information available on the demand (surveys, outdated estimates, models, etc.) and the type of network and assignment mapping (see Cascetta & Nguyen 1988). Less attention has been paid to the possibility of using traffic counts to estimate the parameters of demand models. In this case most of the proposed methods are relative to particular demand model structures (e.g. gravity-type) and the statistical analysis of estimator performance is not thoroughly carried out. In this paper a general statistical framework defining Maximum Likelihood, Non Linear Generalized Least Squares (NGLS) and Bayes estimators of aggregated demand model parameters combining counts-based information with other sources (sample or a priori estimates) is proposed first, thus extending and generalizing previous work by the authors (Cascetta & Russo 1992). Subsequently a solution algorithm of the projected-gradient type is proposed for the NGLS estimator given its convenient theoretical and computational properties. The algorithm is based on a combination of analytical/numerical derivates in order to make the estimator applicable to general demand models. Statistical performances of the proposed estimators are evaluated on a small test network through a Monte Carlo method by repeatedly sampling "starting estimates" of the (known) parameters of a generation/distribution/modal split/assignment system of models. Tests were carried out assuming different levels of "quality" of starting estimates and numbers of available counts. Finally NGLS estimator was applied to the calibration of the described model system on the network of a real medium-size Italian town using real counts with very satisfactory results in terms of both parameter values and counted flows reproduction.  相似文献   

6.
The objective of this research was to develop a simple transit ridership estimation model system for short-range planning. The main feature of the model system is that it exploits knowledge of transit link volumes which are obtained readily from on-off counts. Extensive use is made of default values for model parameters, taken directly from the transportation literature. The remaining parameters can be derived easily from generally available land-use and socioeconomic data. Expensive household surveys and time-consuming model calibrations are not required. A sequence of simple trip generation, trip distribution and modal split models generate trip-purpose specific transit trip tables, denoted as “trial” trip tables. These trip tables and observed transit link volumes are used in a linear programming model which serves as a correction mechanism. The gain in accuracy is achieved by using the ridership information contained in the transit link volumes. The corrected trip tables may be used in a pivot-point analysis to estimate changes in ridership and revenue. The results of a test application of the model system indicate that it can generate accurate ridership estimates when reliable transit link volumes are available from on-off counts, and when the trial transit trip tables as derived from the first three component models are reasonably accurate.  相似文献   

7.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

8.
Ito  Douglas T.  Niemeier  Debbie  Garry  Gordon 《Transportation》2001,28(4):409-425
Transportation conformity is a US regulatory process that requires that transportation modeling be integrated with air quality modeling. Consequently, every change to either modeling process is undertaken with great scrutiny by the regional governments, who have to use the models for demonstrating conformity. This paper explores the "trip versus link debate," which stems from the fact that the standard travel demand models used by most metropolitan planning organizations are primarily link oriented, while the air quality models have been primarily trip oriented. Using the Sacramento region we examine the effects on mobile source emissions inventories when speed-VMT distributions are constructed using the trip and link-based philosophies. The results of our study indicate that trip-based VMT-speed distributions produce consistently lower emissions estimates than the link-based distributions. We use the results to assert that deciding between a trip-based or link-based conformity modeling process involves more than the technical difficulty of changesto the models or the potential political ramifications, it involves assessing which method will provide the most accurate estimates of regional motor vehicle emissions. We also examine ways to think about constructing mobile source emission inventories.  相似文献   

9.
Simplified transport models based on traffic counts   总被引:4,自引:0,他引:4  
Having accepted the need for the development of simpler and less cumbersome transport demand models, the paper concentrates on one possible line for simplification: estimation of trip matrices from link volume counts. Traffic counts are particularly attractive as a data basis for modelling because of their availability, low cost and nondisruptive character. It is first established that in normal conditions it may be possible to find more than one trip matrix which, when loaded onto a network, reproduces the observed link volumes. The paper then identifies three approaches to reduce this underspecification problem and produce a unique trip matrix consistent with the counts. The first approach consists of assuming that trip-making behaviour can be explained by a gravity model whose parameters can be calibrated from the traffic counts. Several forms of this gravity model have been put forward and they are discussed in Section 3. The second approach uses mathematical programming techniques associated to equilibrium assignment problems to estimate a trip matrix in congested areas. This method can also be supplemented by a special distribution model developed for small areas. The third approach relies on entropy and information theory considerations to estimate the most likely trip matrix consistent with the observed flows. A particular feature of this group is that they can include prior, perhaps outdated, information about the matrix.These three approaches are then compared and their likely areas for application identified. Problems for further research are discussed and finally an assessment is made of the possible role of these models vis-a-vis recent developments in transport planning.  相似文献   

10.
Access: The transport-land use economic link   总被引:1,自引:0,他引:1  
The notion of access has evolved from a physical measure of trip interaction to a more economic concept associated with transport benefits. This paper follows the economic interpretation forward in order to understand the potentiality of access as a consistent economic link between the land use system and the transport system. Consistency is achieved in an economic approach based upon the argument that trips are made only if the benefit derived from making contact with other activities exceeds the transport generalized cost. This framework provides economic measures of access, as evidence of impact on origin and destination of trips, which can be calculated from the analysis of the transport system in some relevant cases. This paper analyses how to calculate measures of access from transport demand models and how to allocate transport benefits to the origin and destination activities. Finally, it describes the use of herein proposed access measures in land use-transport interaction modelling.  相似文献   

11.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

12.
Previous methods for estimating a trip matrix from traffic volume counts have used the principles of maximum entropy and minimum information. These techniques implicitly give as little weight to prior information on the trip matrix as possible. The new method proposed here is based on Bayesian statistical inference and has several advantages over these earlier approaches. It allows complete flexibility in the degree of belief placed on the prior estimate of the trip matrix and also allows for different degrees of belief in diffeent parts of the prior estimate. Furthermore under certain assumptions the method reduces to a simple updating scheme in which observations on the link flows successively modify the trip matrix. At the end of the scheme confidence intervals are available for the estimates of the trip matrix elements.  相似文献   

13.
This paper is in the context of studying alternative systems of urban transport in India to determine the costs and performance not only for public transport systems but also for the total transport scenario (i.e. for all vehicles) such that the economic costs are inclusive of costs of time (conservatively), accidents and pollution. In view of inherent deficiencies and delays associated with a traditional transport planning process and its implementation, the paper develops quick response land-use transport planning models for Indian cities to enable integrated, cost-efficient strategies to be evolved, recognizing that urban transport is a function of urban size, form, structure, socio-economic base, etc. A simple statistically significant demand model identified from a basis of appropriate data represents the recommended demand model for Indian cities. This model can be then conveniently used to project trip volume for any Indian city in a future year. A simple gravity model is used to generate the trip assignment for hypothesized city sizes, forms and structures. The results provide a fairly reasonable approximation for the major corridor trip volumes and lengths in the context of the transport requirement for the metropolitan cities in India in 2001 and 2011 A.D. The GOI Study Group arising from the investigations reported in this paper and the discounted cash-flow method of analysis made clear overall recommendations in February 1987 for cities of various populations.  相似文献   

14.
The amount of time required to pick up and discharge passengers is an important issue in the planning and modeling of urban bus systems. Several past studies have employed models of this component of bus travel time which are based, in part, on a model of the number of stoppings the bus makes to pick up or discharge passengers. Most past versions of this model have assumed that expected demand does not vary from stop to stop or from trip to trip, but that the number of passengers demanding service at any given stop during any given trip follows a Poisson distribution. An alternative model is derived, based on the assumption that expected demand varies among stops and times of day but is fixed from day to day at any given stop and time of day. Boarding and alighting survey data are used to verify that the “average-demand” Poisson model consistently overestimates the number of stoppings and to calibrate an approximate version of the alternative model. A stop-spacing optimization model previously developed by Kikuchi and Vuchic is reevaluated using the alternative stopping model in place of the average demand model used in the original version. The results are found to be considerably different, thus indicating that transit route optimization models are sensitive to the way in which stopping processes are modeled.  相似文献   

15.
We compare two estimates of benefits arising from the construction of new bridges in south-west Norway. One estimate comes from a hedonic property value model. Rather than follow an approach which is strictly theoretically correct, we adopt Rosen’s simple first-stage approach. To investigate and validate whether this simplified approach gives a reasonable estimate, we compare it to an estimate derived from a travel demand model. We find that a variant of an ex post hedonic house price model gives very similar estimates to the estimates from the travel demand model. This supports a hypothesis that the simplistic hedonic approach is reasonable.  相似文献   

16.
Dynamic origin-destination (OD) demand is central to transportation system modeling and analysis. The dynamic OD demand estimation problem (DODE) has been studied for decades, most of which solve the DODE problem on a typical day or several typical hours. There is a lack of methods that estimate high-resolution dynamic OD demand for a sequence of many consecutive days over several years (referred to as 24/7 OD in this research). Having multi-year 24/7 OD demand would allow a better understanding of characteristics of dynamic OD demands and their evolution/trends over the past few years, a critical input for modeling transportation system evolution and reliability. This paper presents a data-driven framework that estimates day-to-day dynamic OD using high-granular traffic counts and speed data collected over many years. The proposed framework statistically clusters daily traffic data into typical traffic patterns using t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-means methods. A GPU-based stochastic projected gradient descent method is proposed to efficiently solve the multi-year 24/7 DODE problem. It is demonstrated that the new method efficiently estimates the 5-min dynamic OD demand for every single day from 2014 to 2016 on I-5 and SR-99 in the Sacramento region. The resultant multi-year 24/7 dynamic OD demand reveals the daily, weekly, monthly, seasonal and yearly change in travel demand in a region, implying intriguing demand characteristics over the years.  相似文献   

17.
Current evidence on the transferability of disaggregate travel demand models is inconclusive. Adding to this body of research, the present analysis focuses upon the temporal characteristics of work trip behavior in the San Francisco Bay Area. Using before and after data sets associated with the BART Impact Travel Study, multinomial logit models of work trip modal choice are estimated. The results indicate that the general form and the coefficient estimates of a pre BART model are transferable in time. Moreover, when updated to reflect BART's presence, the model's predictive success and its implied elasticity measures are generally accurate, relative to those implied by reestimating the entire model on post BART data. Finally, as economic theory would predict, elasticity measures of the service related variables were found to increase over time.  相似文献   

18.
An in-depth understanding of travel behaviour determinants, including the relationship to non-travel activities, is the foundation for modelling and policy making. National Travel Surveys (NTS) and time use surveys (TUS) are two major data sources for travel behaviour and activity participation. The aim of this paper is to systematically compare both survey types regarding travel activities and non-travel activities. The analyses are based on the German National Travel Survey and the German National Time Use Survey from 2002.The number of trips and daily travel time for mobile respondents were computed as the main travel estimates. The number of trips per person is higher in the German TUS when changes in location without a trip are included. Location changes without a trip are consecutive non-trip activities with different locations but without a trip in-between. The daily travel time is consistently higher in the German TUS. The main reason for this difference is the 10-min interval used. Differences in travel estimates between the German TUS and NTS result from several interaction effects. Activity time in NTS is comparable with TUS for subsistence activities.Our analyses confirm that both survey types have advantages and disadvantages. TUS provide reliable travel estimates. The number of trips even seems preferable to NTS if missed trips are properly identified and considered. Daily travel times are somewhat exaggerated due to the 10-min interval. The fixed time interval is the most important limitation of TUS data. The result is that trip times in TUS do not represent actual trip times very well and should be treated with caution.We can use NTS activity data for subsistence activities between the first trip and the last trip. This can potentially benefit activity-based approaches since most activities before the first trip and after the last trip are typical home-based activities which are rarely substituted by out-of-home activities.  相似文献   

19.
We estimate demand for automobiles in Greece using a model of product differentiation and use the model to evaluate carbon-based tax schemes that could shift consumer purchases towards low CO2 emission cars. We find that careful policy design, supported by appropriate modeling, can bring about substantial environmental benefits without losing control of economic parameters such as public finances or firm profits. This contrasts to the results of recent vehicle tax reforms in European countries, which turned out to be more costly than initially expected.  相似文献   

20.
Activity-based travel demand modeling (ABTDM) has often been viewed as an advanced approach, due to its higher fidelity and better policy sensitivity. However, a review of the literature indicates that no study has been undertaken to investigate quantitatively the differences and accuracy between an ABTDM approach and a traditional four-step travel demand model. In this paper we provide a comparative analysis against each step – trip generation, trip distribution, mode split, and network assignment – between an ABTDM developed using travel diary data from the Tampa Bay Region in Florida and the Tampa Bay Regional Planning Model (TBRPM), an existing traditional four-step model for the same area. Results show salient differences between the TBRPM and the ABTDM, in terms of modeling performance and accuracy, in each of the four steps. For example, trip production rates calculated from the travel diary data are found to be either double or a quarter less than those used in the TBRPM. On the other hand, trip attraction rates computed from activity-based travel simulations are found to be either more than double or one tenth less than those used in the TBRPM. The trip distribution curves from the two models are similar, but both average and peak trip lengths of the two are significantly different. Mode split analyses show that the TBRPM may underestimate driving trips and fail to capture any usage of alternative modes, such as taxi and nonmotorized (e.g., walking and bicycling) modes. In addition, the ABTDMs are found to be less capable of reproducing observed traffic counts when compared to the TBRPM, most likely due to not considering external and through trips. The comparative results presented can help transportation engineers and planners better understand the strengths and weaknesses of the two types of model and this should assist decision-makers in choosing a better modeling tool for their planning initiatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号