首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we present a dual-time-scale formulation of dynamic user equilibrium (DUE) with demand evolution. Our formulation belongs to the problem class that Pang and Stewart (2008) refer to as differential variational inequalities. It combines the within-day time scale for which route and departure time choices fluctuate in continuous time with the day-to-day time scale for which demand evolves in discrete time steps. Our formulation is consistent with the often told story that drivers adjust their travel demands at the end of every day based on their congestion experience during one or more previous days. We show that analysis of the within-day assignment model is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality. We also show there is a class of day-to-day demand growth models that allow the dual-time-scale formulation to be decomposed by time-stepping to yield a sequence of continuous time, single-day, dynamic user equilibrium problems. To solve the single-day DUE problems arising during time-stepping, it is necessary to repeatedly solve a dynamic network loading problem. We observe that the network loading phase of DUE computation generally constitutes a differential algebraic equation (DAE) system, and we show that the DAE system for network loading based on the link delay model (LDM) of Friesz et al. (1993) may be approximated by a system of ordinary differential equations (ODEs). That system of ODEs, as we demonstrate, may be efficiently solved using traditional numerical methods for such problems. To compute an actual dynamic user equilibrium, we introduce a continuous time fixed-point algorithm and prove its convergence for effective path delay operators that allow a limited type of nonmonotone path delay. We show that our DUE algorithm is compatible with network loading based on the LDM and the cell transmission model (CTM) due to Daganzo (1995). We provide a numerical example based on the much studied Sioux Falls network.  相似文献   

2.
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

3.
Traffic equilibrium models are fundamental to the analysis of transportation systems. The stochastic user equilibrium (SUE) model which relaxes the perfect information assumption of the deterministic user equilibrium is one such model. The aim of this paper is to develop a new user equilibrium model, namely the MDM-SUE model, that uses the marginal distribution model (MDM) as the underlying route choice model. In this choice model, the marginal distributions of the path utilities are specified but the joint distribution is not. By focusing on the joint distribution that maximizes expected utility, we show that MDM-SUE exists and is unique under mild assumptions on the marginal distributions. We develop a convex optimization formulation for the MDM-SUE. For specific choices of marginal distributions, the MDM-SUE model recreates the optimization formulation of logit SUE and weibit SUE. Moreover, the model is flexible since it can capture perception variance scaling at the route level and allows for modeling different user preferences by allowing for skewed distributions and heavy tailed distributions. The model can also be generalized to incorporate bounded support distributions and discrete distributions which allows to distinguish between used and unused routes within the SUE framework. We adapt the method of successive averages to develop an efficient approach to compute MDM-SUE traffic flows. In our numerical experiments, we test the ability of MDM-SUE to relax the assumption that the error terms are independently and identically distributed random variables as in the logit models and study the additional modeling flexibility that MDM-SUE provides on small-sized networks as well as on the large network of the city of Winnipeg. The results indicate that the model provides both modeling flexibility and computational tractability in traffic equilibrium.  相似文献   

4.
In this paper, we address the discrete network design problem, which determines the addition of new roads to existing transportation network to optimize the transportation system performance. Road users are assumed to follow the traffic assignment principle of stochastic user equilibrium. A mixed‐integer nonlinear nonconvex problem is developed to model this discrete network design problem with stochastic user equilibrium. The original problem is relaxed into a convex mixed‐integer nonlinear program, whose solution provides a lower bound of the original problem. The relaxed problem is then embedded into two proposed global optimization solution algorithms to obtain the global optimal solution of the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
An equivalent continuous time optimal control problem is formulated to predict the temporal evolution of traffic flow pattern on a congested multiple origin-destination network, corresponding to a dynamic generalization of Wardropian user equilibrium. Optimality conditions are derived using the Pontryagin minimum principle and given economic interpretations, which are generalizations of similar results previously reported for single-destination networks. Analyses of sufficient conditions for optimality and of singular controls are also given. Under the steady-state assumptions, the model is shown to be a proper dynamic extension of Beckmann's mathematical programming problem for a static user equilibrium traffic assignment.  相似文献   

6.
This paper investigates the local and global impact of speed limits by considering road users’ non-obedient behavior in speed selection. Given a link-specific speed limit scheme, road users will take into account the subjective travel time cost, the perceived crash risk and the perceived ticket risk as determinant factors for their actual speed choice on each link. Homogeneous travelers’ perceived crash risk is positively related to their driving speed. When travelers are heterogeneous, the perceived crash risk is class-specific: different user classes interact with each other and choose their own optimal speed, resulting in a Nash equilibrium speed pattern. With the speed choices on particular roads, travelers make route choices, resulting in user equilibrium in a general network. An algorithm is proposed to solve the user equilibrium problem with heterogeneous users under link-specific speed limits. The models and algorithms are illustrated with numerical examples.  相似文献   

7.
The purpose of this paper is to examine the scaling effect and overlapping problem in a route choice context using the logit-based stochastic user equilibrium (SUE) principle to explicitly account for the congestion effect. Numerical experiments are performed on nine models: the deterministic user equilibrium model, the multinomial logit SUE model with and without scaling, the C-logit SUE model with and without scaling, the path-size logit SUE model with and without scaling, and the paired combinatorial logit SUE model with and without scaling. Sensitivity analysis is conducted to examine the effects of route sets, congestion levels, dispersion intensities, and network asymmetries. A real transportation network in the City of Winnipeg, Canada is also used to compare the network equilibrium flow allocations of different SUE models. The results of the sensitivity analysis and the Winnipeg network reveal that both scaling effect and overlapping problem can have a significant impact on the network equilibrium flow allocations.  相似文献   

8.
Given the rapid development of charging-while-driving technology, we envision that charging lanes for electric vehicles can be deployed in regional or even urban road networks in the future and thus attempt to optimize their deployment in this paper. We first develop a new user equilibrium model to describe the equilibrium flow distribution across a road network where charging lanes are deployed. Drivers of electric vehicles, when traveling between their origins and destinations, are assumed to select routes and decide battery recharging plans to minimize their trip times while ensuring to complete their trips without running out of charge. The battery recharging plan will dictate which charging lane to use, how long to charge and at what speed to operate an electric vehicle. The speed will affect the amount of energy recharged as well as travel time. With the established user equilibrium conditions, we further formulate the deployment of charging lanes as a mathematical program with complementarity constraints. Both the network equilibrium and design models are solved by effective solution algorithms and demonstrated with numerical examples.  相似文献   

9.
The aim of this paper is to develop a path-size weibit (PSW) route choice model with an equivalent mathematical programming (MP) formulation under the stochastic user equilibrium (SUE) principle that can account for both route overlapping and route-specific perception variance problems. Specifically, the Weibull distributed random error term handles the identically distributed assumption such that the perception variance with respect to different trip lengths can be distinguished, and a path-size factor term is introduced to resolve the route overlapping issue by adjusting the choice probabilities for routes with strong couplings with other routes. A multiplicative Beckmann’s transformation (MBec) combined with an entropy term are used to develop the MP formulation for the PSW-SUE model. A path-based algorithm based on the partial linearization method is adopted for solving the PSW-SUE model. Numerical examples are also provided to illustrate features of the PSW-SUE model and its differences compared to some existing SUE models as well as its applicability on a real-size network.  相似文献   

10.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

11.
Although various approaches have been proposed for modeling day-to-day traffic flow evolution, none of them, to the best of our knowledge, have been validated for disrupted networks due to the lack of empirical observations. By carefully studying the driving behavioral changes after the collapse of I-35W Mississippi River Bridge in Minneapolis, Minnesota, we found that most of the existing day-to-day traffic assignment models would not be suitable for modeling the traffic evolution under network disruption, because they assume that drivers’ travel cost perception depends solely on their experiences from previous days. When a significant network change occurs unexpectedly, travelers’ past experience on a traffic network may not be entirely useful because the unexpected network change could disturb the traffic greatly. To remedy this, in this paper, we propose a prediction-correction model to describe the traffic equilibration process. A “predicted” flow pattern is constructed inside the model to accommodate the imperfect perception of congestion that is gradually corrected by actual travel experiences. We also prove rigorously that, under mild assumptions, the proposed prediction-correction process has the user equilibrium flow as a globally attractive point. The proposed model is calibrated and validated with the field data collected after the collapse of I-35W Bridge. This study bridges the gap between theoretical modeling and practical applications of day-to-day traffic equilibration approaches and furthers the understanding of traffic equilibration process after network disruption.  相似文献   

12.
This paper presents a unified approach for improving travel demand models through the application and extension of supernetwork models of multi-dimensional travel choices. Proposed quite some time ago, supernetwork models solved to stochastic user equilibrium can provide a simultaneous solution to trip generation, distribution, mode choice, and assignment that is consistent with disaggregate models and predicts their aggregate effects. The extension to incorporate the time dimension through the use of dynamic equilibrium assignment methods is proposed as an enhancement that is necessary in order to produce realistic models. A variety of theoretical and practical problems are identified whose solution underlies implementation of this approach. Recommended future research includes improved algorithms for stochastic and dynamic equilibrium assignment, new methods for calibrating assignment models, and the use of Geographic Information Systems (GIS) technology for data and model management.  相似文献   

13.
A general dynamical system model with link-based variables is formulated to characterize the processes of achieving equilibria from a non-equilibrium state in traffic networks. Several desirable properties of the dynamical system model are established, including the equivalence between its stationary state and user equilibrium, the invariance of its evolutionary trajectories, and the uniqueness and stability of its stationary points. Moreover, it is shown that not only a link-based version of two existing day-to-day traffic dynamics models but also two existing link-based dynamical system models of traffic flow are the special cases of the proposed model. The stabilities of stationary states of these special cases are also analyzed and discussed. In addition, an extension is made to the case with elastic demand. The study is helpful for better understanding the day-to-day adjustment mechanism of traffic flows in networks.  相似文献   

14.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

15.
We consider the problem of characterizing user equilibria and optimal solutions for routing in a given network. We extend the known models by considering users oblivious to congestion in the following sense: While in the typical user equilibrium setting the users follow a strategy that minimizes their individual cost by taking into account the (dynamic) congestion due to the current routing pattern, an oblivious user ignores congestion altogether; instead, he or she decides his routing on the basis of cheapest routes on a network without any flow whatsoever. These cheapest routes can be, for example, the shortest paths in the network without any flow. This model tries to capture the fact that a certain percentage of travelers base their route simply on the distances they observe on a map, without thinking (or knowing, or caring) about the delays experienced on this route due to their fellow travelers. In this work we study the effect of such users using as the measure of network performance its price of anarchy, i.e., the ratio of the total latency experienced by the users (oblivious or not) at equilibrium over the social optimum.  相似文献   

16.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

17.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available.  相似文献   

18.
In this paper, we propose a link-node complementarity model for the basic deterministic dynamic user equilibrium (DUE) problem with single-user-class and fixed demands. The model complements link-path formulations that have been widely studied for dynamic user equilibria. Under various dynamic network constraints, especially the exact flow propagation constraints, we show that the continuous-time dynamic user equilibrium problem can be formulated as an infinite dimensional mixed complementarity model. The continuous-time model can be further discretized as a finite dimensional non-linear complementarity problem (NCP). The proposed discrete-time model captures the exact flow propagation constraints that were usually approximated in previous studies. By associating link inflow at the beginning of a time interval to travel times at the end of the interval, the resulting discrete-time model is predictive rather than reactive. The solution existence and compactness condition for the proposed model is established under mild assumptions. The model is solved by an iterative algorithm with a relaxed NCP solved at each iteration. Numerical examples are provided to illustrate the proposed model and solution approach. We particularly show why predictive DUE is preferable to reactive DUE from an algorithmic perspective.  相似文献   

19.
Calculating equilibrium sensitivity on a bush can be done very efficiently, and serve as the basis for a network contraction procedure. The contracted network (a simplified network with a few nodes and links) approximates the behavior of the full network but with less complexity. The network contraction method can be advantageous in network design applications where many equilibrium problems must be solved for different design scenarios. The network contraction procedure can also be used to increase the accuracy of subnetwork analysis. This method requires calculating travel time derivatives between two nodes, with respect to the demand between them, assuming that the flow distributes in a way that equilibrium is maintained. Previous research describes two methods for calculating these derivatives. This paper presents a third method, which is simpler, faster, and just as accurate. The method presented in this paper reformulates the linear system of equations defining these sensitivities as the solution to a convex programming problem, which can be solved by making minor modifications to static user equilibrium algorithms. In addition, the model is extended to capture the interactions between the path travel times and network flows, and a heuristic is proposed to compute these interactions. The accuracy and complexity of the proposed methodology are evaluated using the network of Barcelona, Spain. Further, numerical experiments on the Austin, Texas regional network validate its performance for subnetwork analysis applications.  相似文献   

20.
Speed limits are usually imposed on roads in an attempt to enhance safety and sometimes serve the purpose of reducing fuel consumption and vehicular emissions as well. Most previous studies up to date focus on investigation of the effects of speed limits from a local perspective, while network-wide traffic reallocation effects are overlooked. This paper makes the first attempt to investigate how a link-specific speed limit law reallocates traffic flow in an equilibrium manner at a macroscopic network level. We find that, although the link travel time–flow relationship is altered after a speed limit is imposed, the standard traffic assignment method still applies. With the commonly adopted assumptions, the uniqueness of link travel times at user equilibrium (UE) remains valid, and the UE flows on links with non-binding speed limits are still unique. The UE flows on other links with binding speed limits may not be unique but can be explicitly characterized by a polyhedron or a linear system of equalities and inequalities. Furthermore, taking into account the traffic reallocation effects of speed limits, we compare the capability of speed limits and road pricing for decentralizing desirable network flow patterns. Although from a different perspective for regulating traffic flows with a different mechanism, a speed limit law may play the same role as a toll charge scheme and perform better than some negative (rebate) toll schemes under certain conditions for network flow management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号