首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为研究路堤下地基沉降影响因素的显著性,采用等水平正交表进行正交试验设计,建立了地基沉降理想弹塑性有限元分析模型,通过计算路堤填土重力作用下的地基沉降及塑性变形,分析了在高低两种地基土强度条件下地基土的变形模量、内摩擦角、黏聚力、重度和路堤高度、填土变形模量、填土重度7种因素对地基沉降影响的主次关系。分析结果表明:对地基沉降影响最为显著的因素是地基土变形模量和路堤高度;随着地基土强度的降低,地基土的塑性变形增加明显,地基土内摩擦角对地基沉降的影响程度凸显,其显著性明显超过路堤填土重度与地基土黏聚力;对地基土的塑性变形而言,地基土内摩擦角的显著性大于地基土变形模量、路堤高度等因素,影响程度最为显著。研究成果可为地基沉降分析与工后沉降控制提供参考。  相似文献   

2.
以单侧反包式加筋土路堤为研究对象,基于塑性极限分析上限法并引入土体剪切强度折减系数,考虑拉筋拉断和拔出2种破坏模式,给出了路堤边坡稳定性分析方法,并推导了相关计算公式。在此基础上给出了基于路堤稳定性加筋土等效为纯土体时的准黏聚力计算方法,并采用工程实例分析拉筋极限拉力、拉筋竖向间距、填土内摩擦角、拉筋长度、路堤高度及顶面荷载对准黏聚力的影响。结果表明:拉筋极限拉力、拉筋长度、拉筋间距、填土内摩擦角对准黏聚力的影响相对较大;传统方法与本文方法得到的准黏聚力计算值之比往往大于2;传统方法确定的准黏聚力值易过高估计路堤边坡的稳定性,一般不宜用于路堤边坡稳定性分析。  相似文献   

3.
为确定U形槽路堤结构立臂上有限土体主动土压力,基于U形槽结构对称性特征,采用两段折线型滑面假设,通过极限平衡方法推导出有限土压力计算公式,定量反映了填土重度、内摩擦角与黏聚力、填土-立臂界面外摩擦角与黏聚力、U形槽宽度与立臂高度、顶面外荷载等因素对土压力的影响;实例分析表明:本方法计算的有限土压力比既有相关方法约超出2...  相似文献   

4.
基于Hewlett方法的桩网复合地基土拱效应优化算法   总被引:2,自引:2,他引:0  
桩网复合地基填土性质与土拱效应发挥程度直接相关,而传统土拱模型并不能有效反映填土黏聚力对桩土应力计算结果的影响。在Hewlett极限状态空间土拱效应分析基础上,采用填土综合内摩擦角指标完成空间土拱拱顶及拱脚位置处单元土体应力极限状态分析,考虑桩间土应力非均匀分布与被动土压力发挥程度的影响,得到桩网复合地基桩体荷载分担比解析表达式。研究结果表明:填土黏聚力显著提高路基填土土拱效应,复合地基设计应考虑填土黏聚力的有利影响;桩间土应力并非均匀分布,通过非均匀分布系数折减后,可有效提高弹性工作状态的桩体荷载分担计算结果;考虑被动土压力发挥程度的计算结果并不合理,应分别由桩顶和拱脚土体应力极限状态确定对应的桩体荷载分担比,取较小值为最终桩体荷载分担比结果。  相似文献   

5.
地震荷载作用下,按现有规范采用拟静力法设计的挡土墙仍发生了各种破坏。为探索地震荷载下土中应力分布对于岩土抗震工程的作用,合理地进行挡土墙抗震设计,采用拟静力法对地震荷载进行描述,根据弹性力学理论并假设问题满足平面应变的条件下,推导地震荷载下土体主应力的大小和方向的计算公式。通过对该点Mohr应力圆的分析,给出挡土墙动土压力大小与土体裂缝深度计算方法。研究结论:(1)地震主动和被动土压力系数均随着内摩擦角的增大而增大;(2)黏聚力对地震主动土压力系数的大小无影响,对地震被动土压力系数的影响较小;(3)土体裂缝深度随内摩擦角和黏聚力的增加而增大。  相似文献   

6.
圆形截面抗滑桩广泛应用于边坡加固和地质灾害治理工程中,传统的圆形截面抗滑桩理论和经验计算公式未考虑土-拱效应,因此计算结果不合理。本文基于Ito塑性变形理论,考虑桩-土相互作用的土-拱效应,推导出圆形截面抗滑桩在考虑土-拱效应时计入桩土摩擦力的水平分布力计算公式以及边坡稳定性系数F_s;并结合工程算例,讨论了土体重度、黏聚力、内摩擦角和桩间距对边坡稳定性的影响,研究结果表明:(1)通过推导的水平分布力公式,可得圆形截面抗滑桩的布桩位置对桩身抗力和边坡稳定性系数的影响,边坡稳定性系数在抗滑桩距离坡脚约为0.5L时最大,0.4~0.6L时处于稳定状态;(2)黏聚力和内摩擦角对边坡稳定性起着决定性的影响因素,土体的重度对边坡稳定性的影响并不明显,当桩身距离坡脚0.5L时,边坡土体的重度对边坡稳定性影响更加明显;(3)在考虑边坡稳定性和工程造价的条件下,采取2~2.5倍桩径距离进行布桩可以达到良好的工程效果。  相似文献   

7.
为进一步明确碎石桩与抗滑桩联合加固斜坡软弱地基路堤的工作机理,本文建立无加固措施、碎石桩加固、抗滑桩加固及碎石桩与抗滑桩联合加固斜坡软弱地基路堤的FLAC3D数值分析模型,研究4种工况土体的水平位移、竖向沉降及抗滑桩桩身内力与变形。结合正交设计方法,探讨斜坡软弱层土体重度、黏聚力和内摩擦角对抗滑桩桩身最大弯矩的影响权重排序。碎石桩、抗滑桩加固斜坡软弱地基分别可以明显约束竖向沉降、水平位移,而碎石桩与抗滑桩联合加固能同时削减竖向沉降及水平位移。碎石桩加固斜坡软弱地基,潜在滑动面一定程度上移;联合加固时抗滑桩桩身内力及变形较直接进行抗滑桩加固有较大幅度衰减,斜坡软弱层土体内摩擦角的变化对抗滑桩桩身最大弯矩的影响远大于黏聚力与重度变化。所获结论有益于碎石桩与抗滑桩联合加固斜坡软弱地基路堤时抗滑桩设计技术改善。  相似文献   

8.
借助极限分析方法上限定理,计算考虑孔隙水压力和通过拟静力法简化的水平和竖直向地震力作用下的二级边坡的挡土墙被动土压力的上限解。根据获得的被动土压力上限解,利用MATLAB软件对上限解进行优化计算,并选取适当的参数,分析不同的边坡土体参数及地震土压力系数对挡土墙被动土压力上限解的影响,研究结果表明:二级边坡的被动土压力系数随着横向地震力荷载系数Kh,ρ角和孔隙水压力系数的增加而增加,随着内摩擦角φ和黏聚力c的增大而减小。  相似文献   

9.
碎石土地基承载力试验研究   总被引:4,自引:0,他引:4  
通过现场直剪试验、重型动力触探试验和深层平板栽荷试验,探讨了三峡库区猴子石滑坡体上碎石土地基未浸水和浸水时地基承载力.结果表明:浸水后碎石土黏聚力幅度下降较大,离散性大;内摩擦角变化相对比较稳定,且降幅不大.内摩擦角衰减系数η(4)主要分布在0.78~1.0之间;黏聚力的衰减系数ηc分布在0.4~0.8之间.平板载荷试...  相似文献   

10.
含水量w和压实度K是影响黏性土地基承载力特性的2个关键因素.通过不同压实度条件下的平板荷载试验和抗剪强度试验,获得了压实度与地基承载力参数的关系数据;探讨了含水量变化时,土体内摩擦角(4)和黏聚力c的变化情况,研究了含水量对黏性土地基承载力的影响;对采用Hansen公式计算黏性土地基承载力提出了含水量修正建议.  相似文献   

11.
传统的太沙基松动土压力理论是基于浅埋地层这一基本假定建立的,其对于城市深埋地层不具备适用性。在深埋土质隧道土拱效应完全发挥情况下,考虑主应力轴旋转修正无黏性土侧压力系数计算方法;基于有限差分数值平台开展不同埋深、不同内摩擦角下的有限元模拟确定深埋黏性土层的破坏模式。给出考虑主应力轴旋转和内摩擦角对松动区高度影响的深埋无黏性土、黏性土地层的松动土压力计算公式,以实现对城市深埋土质隧道上覆土压力的准确计算。修正公式计算结果与文献、数值模拟结果对比分析结果表明:在深埋情况下,无黏性土层松动土压力修正公式计算结果与文献结果吻合良好;土体强度参数会对黏性土松动区高度造成影响,即随着内摩擦角的增大,松动区高度不断减小;黏性土层松动土压力修正公式计算结果与数值模拟结果吻合良好。  相似文献   

12.
盾构在掘进的过程中,必须确保隧道开挖面前方土体的稳定。将隧道沿纵向简化成平面应变情况,利用双对数螺旋线破坏模式,基于极限分析上限定理,对隧道开挖面前方土体的主动破坏形式进行研究。将盾构机作用在开挖面上的支护力视为均布荷载,得到支护力的上限解,利用Matlab软件编程求解该上限解的最优解,讨论各参数对破坏模式形状和支护力大小的影响。研究结果表明:破坏模式的形状由内摩擦角φ决定;随着黏聚力c和内摩擦角φ的增大,隧道的支护反力σt减小。  相似文献   

13.
对浅埋隧道,松动围岩压力经典理论的计算结果差异显著,且在某些假定上存在不足。本文克服了经典理论假定上的不足,建立了实用的松动压力公式。该公式计算的松动压力随埋深、黏聚力、内摩擦角等参数的变化均符合一般规律。该公式随埋深变化具有极大值,这一特征与岩柱理论、谢家烋公式类似。该公式可以用于内摩擦角φ≤45°的一般土质隧道,当φ≤10°时,该公式计算值与Terzaghi公式计算值差别微小。实测数据和对土柱的理论分析表明:松动压力的理论最大值为岩柱理论计算值。本文公式与Terzaghi公式计算值小于最大值,谢家烋公式计算值大于最大值。该公式对浅埋土质隧道和松散破碎的岩石隧道具有重要的参考价值。  相似文献   

14.
本文通过室内膨胀率试验和剪切试验,探究了肯尼亚蒙巴萨地区重塑膨胀土的膨胀特性和抗剪强度特性,分析了初始含水率、初始干密度及干湿循环效应对其特性的影响,并提出针对该地区膨胀土边坡防护工程的相关建议。研究表明:(1)随膨胀土初始干密度的增加,膨胀率呈线性关系增大,黏聚力呈指数关系增大;(2)随膨胀土初始含水率的增加,膨胀率呈分段线性关系降低,黏聚力和内摩擦角呈线性关系降低;(3)干湿循环效应使得土体黏聚力出现大幅度的衰减。  相似文献   

15.
针对明洞洞顶垂直土压力计算公式的不足,综合考虑大、小边坡坡角,推导沟槽式高填黄土明洞洞顶垂直土压力统一计算公式。采用荷载等效方法,将数值计算的明洞顶土压力的抛物线型分布荷载转化为均布荷载,与统一公式计算得到的均布荷载进行对比,验证统一计算方法的正确性。取20°的小坡角沟槽,利用统一计算方法研究填料性质、明洞与沟槽宽度比等参数的敏感性对土压力的影响。结果表明:小坡角沟槽情况下,填土内摩擦角、黏聚力以及沟槽与明洞宽度比对明洞洞顶土压力基本无影响;填土模量增大可以减小土体压缩相对变形量,减轻明洞洞顶应力集中现象。因此,在实际小坡角沟槽明洞工程中,应尽量提高土体压实度,减小明洞结构受力。  相似文献   

16.
为探究固体废弃物牡蛎壳粉对膨胀土工程特性的改良效果,以广西宁明膨胀土为研究对象,对牡蛎壳粉掺量分别为0%,3%,6%,9%和12%的膨胀土开展一系列胀缩特性试验以及干湿循环条件下的直剪试验,并通过SEM试验分析了改良前后膨胀土的微观结构特征。试验结果表明:牡蛎壳粉可有效降低土体的胀缩性,提高土体的黏聚力。土体的自由膨胀率、无荷膨胀率、有荷膨胀率、膨胀力、线缩率等随牡蛎壳粉掺量增加而降低,在牡蛎壳粉掺量为9%时有稳定趋势。牡蛎壳粉掺量为9%时,土体黏聚力达到峰值;所有掺量土体的黏聚力均随干湿循环次数增加而降低,均在干湿循环4次时趋于稳定,且掺牡蛎壳粉土体黏聚力的降低幅度要低于未掺量土体;经历6次干湿循环后,牡蛎壳粉掺量为9%土体的黏聚力相对于未掺量土体增加了42.38%。土体内摩擦角的变化规律性不明显,但整体上掺牡蛎壳粉土体的内摩擦角大于未掺量土体。微观结果显示掺入牡蛎壳粉增强了土体的稳定性,减缓了膨胀土在经历干湿循环后裂隙、孔隙的发育。牡蛎壳粉对膨胀土胀缩特性、强度特性等具有一定的改性效果。研究结果为实现牡蛎壳粉改良膨胀土提供理论基础数据。  相似文献   

17.
有限土体土压力理论在兰州地铁1号线工程中的应用研究   总被引:1,自引:1,他引:0  
针对典型砂卵石地层条件下地铁车站基坑与邻近构筑物间形成的有限土体,从有限土体土压力的形成机理出发,通过解析法建立能完全反应土体受力状态的有限土体土压力计算模型,提出考虑土体黏聚力影响的有限土体临界宽高比与临界宽度修正模型,明确有限土体临界宽高比主要介于0.55~0.65,基本不受基坑开挖深度的影响,明确了有限土体临界宽度与基坑开挖深度成线性关系,基坑开挖深度越大,有限土体土压力与经典土压力之间的差异越明显,深度≥10 m的超深基坑必须考虑有限土体土压力的作用,有限土体土压力能有效减少基坑围护结构内力与配筋,精细化设计有利于控制工程造价。  相似文献   

18.
研究目的:为解决富水区红层黏土路基含水率高、无法压实等问题,本文通过向原状土中掺入一定粒径配比的弱风化红层泥岩碎石,制成不同级配和含水率的改良填料,然后进行重型击实试验、大型直接剪切试验及无侧限抗压强度试验,以获得满足铁路路基填筑要求的填料方案。研究结论:(1)红层原状土通过掺入弱风化泥岩碎石可有效降低原状土的含水率,改良填料的最优含水率为10.26%,最大干密度为2.22 g/cm~3;(2)最优含水率时改良填料的黏聚力c为29.336 k Pa,内摩擦角φ为32.86°,相较于红层天然原状土抗剪强度有明显的提高;(3)改良填料的无侧限抗压强度在含水率为8.85%时最大,达到518.80 k Pa,随着含水率的增加其逐渐降低;(4)通过混合弱风化红层泥岩碎石与红层黏土的改良填料,不仅没有改变红层黏土特性,而且能有效降低原状土填料含水率,增加抗剪强度和抗变形能力,改良后填料的含水率和压实性能满足《铁路路基设计规范》要求;(5)该改良方案可为西南富水红层地区铁路路基基床以下路堤填筑工程提供参考。  相似文献   

19.
以鹤大公路草炭土地基为依托,通过室内试验,分析草炭土、黏土的工程地质特性,确定极限填筑高度计算参数,采用JANBU法计算路堤稳定性,得出此类软土路基的破坏模式。研究各级填筑高度与其对应的各自最小安全系数之间的关系,确定试验段草炭土地基的极限填筑高度。  相似文献   

20.
研究目的:确定掌子面推力大小是保障周边土体稳定的重要前提,在下穿既有隧道工程中更为关键。基于极限平衡法和筒仓理论,考虑既有隧道的荷载作用,推导砂土地层中下穿既有隧道工况下掌子面盾构推力计算公式,通过数值模拟和实际工程验证公式的正确性。在此基础上讨论考虑既有线和不考虑既有线两种计算方式的适用性,最后分析土体内摩擦角、两线距离及覆土厚度等参数对掌子面极限推力的影响。研究结论:(1)筒仓理论适用于下穿既有线工程掌子面极限推力计算,推导所得公式计算结果更精确;(2)砂土地层中盾构下穿既有隧道时,掌子面盾构极限推力随着与既有隧道间距、覆土厚度增加而增大,随着土体内摩擦角增大而减小;(3)本研究成果为新建隧道盾构安全下穿既有隧道工程提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号