首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
高速动车组电空制动系统是由气动元件、电子元件和基础制动装置组成的复杂系统。基于现代流体力学的仿真分析软件AMESim建立制动系统中关键气动元件的仿真模型,通过试验数据对仿真模型进行验证和参数修正;将封装的气动元件模型与电子元件模型和基础制动装置进行系统集成,建立单车以及列车级电空制动系统仿真模型。基于列车级电空制动系统仿真模型,对高速动车组电空制动系统参数进行配置和分析,设计高速动车组电空制动系统。在最大常用制动和紧急制动2种工况下对基于仿真模型设计的高速动车组电空制动系统进行验证。结果表明:最大常用制动时减速度仿真值与减速度设计值相符;紧急制动时制动距离试验值为5 670m,仿真计算值为5 795m,相对误差为2.2%,仿真计算值与试验值吻合程度高。  相似文献   

2.
动车组制动系统减速度是依据运营线路情况(黏着)和车辆追踪间隔时间要求,确定的列车顶层技术指标。制动控制系统减速度曲线设计,必须满足减速度顶层指标确保制动距离安全,还需统筹考虑黏着利用降低滑行风险、最优化电制动利用;兼顾司机操作及乘客的舒适度、基础制动磨耗的经济性,使列车安全舒适,制动系统经济效益最大化。以速度250km/h中国标准动车组常用制动减速度曲线设计为例,介绍动车组制动系统常用制动减速度曲线设计方法及关键点。  相似文献   

3.
邓之明 《铁道车辆》2006,44(11):15-20
通过对高速动车组制动减速度、制动功率、制动粘着利用和各种基础制动方式的分析,对“中华之星”动车组电动力制动与空气制动的比较,以及对微机直通电空和微机自动电空2种制动控制方式的选择,提出了对我国高速动车组制动系统设计的看法和建议。  相似文献   

4.
对地铁车辆制动系统的基本特性进行了介绍,分析了影响ATO(列车自动运行)控车精度的车辆性能参数,阐述了电空制动转换过程中控制参数的调整和优化方法。以南京地铁3号线车辆制动系统特性的优化为研究对象,通过对电空制动转换速度点、电制动延迟退出时间、电制动退出斜率等控制参数进行优化,以及对电空制动转换后的空气制动力目标值进行削减,使得整个电空制动转换过程中不再存在制动力叠加的现象,制动减速度曲线亦无明显波动,从而使制动系统的特性更加稳定。  相似文献   

5.
针对城市轨道交通列车电空制动系统控制过程中外界干扰、执行机构时滞、基本阻力不确定等特性造成ATO(列车自动运行)系统速度跟踪及停车不准问题,根据李雅普诺夫稳定性理论提出一种基于SMARC(滑模自适应鲁棒控制)的城市轨道交通列车电空制动控制策略,设计城市轨道交通列车ATO系统基于SMARC的制动控制器。通过鲁棒控制将系统模型中非线性、输入时滞和外界扰动等所有不确定量减小到最小范围,同时也削弱了滑模控制器的抖振现象,增强了控制器的鲁棒性;进一步采用滑模控制减小列车制动过程中速度跟踪误差和减速度误差,从而获得较高的停车精度。仿真结果表明,基于SMARC的制动控制器的控制能完全满足城市轨道交通列车制动要求。  相似文献   

6.
随着提速列车与准高速旅客列车的开行,列车电空制动技术的应用与推广已成大势所趋。文章通过对DK-1列车电空制动系统的介绍,帮助读者了解我国列车电空制动技术的现状。  相似文献   

7.
270km/h高速列车制动系统   总被引:1,自引:1,他引:0  
为满足我国270km/h高速列车制动技术条件,铁道科学研究院机车车辆研究所开发研制了新型高速列车制动系统.该系统主要特点体现在微机直通电空制动控制系统,大制动功率盘形基础制动以及高性能电子防滑器等,使高速列车在270km/h的运行状态下,实施空电联合制动时,实现了3100m距离内安全停车的要求.  相似文献   

8.
我国高速列车将采用电空直通-自动式制动系统,其主要制动机为微机控制的直通电控制动装置。介绍了电空制动控制单元的工作原理、系统组成和软件实现,对安全联锁的设计进行了分析。  相似文献   

9.
高速列车制动技术综述   总被引:4,自引:1,他引:3  
阐述了制动系统与高速列车安全性的关系,综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况;介绍了高速列车空电联合制动力的控制模式并就各种模式的优缺点进行对比,概述了高速列车的防滑再粘着控制技术,论述了高速列车制动技术的发展趋势.  相似文献   

10.
高速列车制动系统性能的探讨   总被引:2,自引:1,他引:1  
从高速列车的特点出发,对列车制动系统缓解后的充风时间、电空制动控制方式、制动方式的配合和控制性能等进行探讨。着重探讨紧急制动距离以外的高速列车制动系统性能方面的问题。  相似文献   

11.
高速列车制动模式探讨   总被引:6,自引:2,他引:4  
高速列车的功能比普通列车的大几倍,而高速下轮机间的粘着系数及闸瓦与动轮之间的摩擦系数都降低了一个数量级,故高速列车必须采用新的制动体系,电阻制动技术成熟,而再生制动能回收大部分动能,且制动特性较好,在直流牵引电动机和交流同步,异步电动机驱动中得到广泛应用。盘形制动在高速车辆上是必不可少的。在非粘着的电气制动中,磁轨制动的磨耗大,适用于紧急制动,而轨道涡流制动在80~300km/h速度内,制动特性平  相似文献   

12.
不同材质闸瓦的等效(二次换算)系数近似取值的修正   总被引:1,自引:1,他引:0  
现时我国铁路普通货物列车与普通旅客列车已用高磷铸铁闸瓦取代中磷铸铁闸瓦,而不同材质闸瓦车辆混编主要发生在90km/h以下的普通货物列车。鉴于铸铁闸瓦和低摩合成闸瓦的摩擦系数均受制动初速影响,所以相关的等效(二次换算)系数要按普通货物列车的制动初速约80km/h进行修正。具体修正的不同材质闸瓦的等效(二次换算)系数推荐用于编制机车车辆每台(辆)等效换算闸瓦力表及其他相关方面。  相似文献   

13.
为使列车提速及提高列车运行可靠性,铁道车辆制动系统正在引进新技术、新装置。东北新干线的E5系、东海道·山阳新干线的N700系都采用了新制动装置。既有线车辆亦应用了防滑控制、编组制动控制等新技术。本文就新干线与既有线车辆采用的制动技术及正在研发的新技术和研究课题做一介绍。  相似文献   

14.
制动系统的性能对列车安全运行有重要的影响。在原理分析的基础上,利用AMESim仿真软件对EP2002制动系统气动阀单元(PVU)进行了建模,并通过常用制动和紧急制动仿真验证模型的正确性。在MATLAB/Simulink软件环境下搭建列车动力学模型,并编写防滑控制逻辑,与AMESim气动阀模型进行联合仿真,验证防滑逻辑的有效性。从常用制动和紧急制动仿真结果可以得出,所搭建的EP2002的PVU与真实系统的反应一致,验证了PVU模型的正确性。从防滑控制仿真结果可以看出,所设计的防滑控制逻辑能够达到控制要求,在发生连续滑行时能够达到稳定的防滑效果,为实际列车制动系统的设计和故障的解决提供了有效的模型基础。  相似文献   

15.
长期以来,列车制动系统在实验室内只能进行制动阀和制动系统静置试验,难以直接测试列车实际动态制动性能,因而对于长大货物列车制动性能及引起的纵向动力学效果难以判断。为此提出了基于滚动制动试验台进行车辆动态制动试验,即将虚拟列车制动系统模型与实际车辆制动系统组合,应用虚拟列车制动系统模型,通过计算机控制模拟不同编组列车的不同位置车辆的制动管路气压曲线,控制滚动制动试验台上单车做各种制动试验,以得出比较准确的列车各个车辆的实际动态制动效果。滚动制动试验台上车辆实际制动减速度和车辆前后拉杆承受的纵向力,为进一步评估各种编组列车制动纵向动力学性能提供了准确的依据,为长大货物列车运行安全提供了可靠的评估试验仿真装置。  相似文献   

16.
在CRH5G型动车组运营前期的动态调试过程中,受部分铁路区段接触网压影响,使电制动发挥异常,在长大坡道的调速过程中完全由空气制动完成制动力的施加,使制动盘和闸片长期处于异常高温状态,可靠性降低而易发生故障。文章针对存在问题,通过优化制动力分配的逻辑结构,对制动力分配的方案进行了优化与升级。线路实测和制动盘热负荷计算分析证明,优化的方案能够有效地减少制动系统故障,节能降耗,持续提高我国高速列车高能效水平。  相似文献   

17.
世界铁路高速列车50年的发展与进步   总被引:2,自引:0,他引:2  
回顾了50年来世界铁路高速列车的发展历程、技术现状和所取得的成就,以及高速列车的最新进展和发展趋势.其中重点介绍日本、法国、德国、意大利等国家为代表的高速列车原创国的高速列车发展概况、技术特点和最新进展.  相似文献   

18.
介绍世界各国制动系统黏着限制设置及增黏方式,通过对制动系统黏着系数设置的探讨,对我国高速动车组利用黏着系数的方法进行研究,并介绍几种车辆有效增黏的方法。  相似文献   

19.
对地铁车辆电空混合制动方式及空气制动施加方式进行介绍,并利用有限元仿真软件对等黏着、等磨耗两种空气制动施加方式下,车轮踏面的温度变化情况进行仿真分析.通过踏面温度影响及踏面磨耗影响说明了两种空气制动施加方式的特点.  相似文献   

20.
文章结合SS4B型机车制动机无线重联升级改造,阐述了升级改造后的DK-2制动机系统结构及技术特点,同时基于重载组合列车对制动系统的基本要求,从DK-2制动机列车编组模式设置、从控机车制动机指令执行方式、通讯中断后制动控制处理等方面对制动机同步控制策略进行了研究探讨.实践证明,DK-2制动机能实现重载列车制动的同步性和一...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号