首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
利用计算流体动力学的方法,对光滑表面MIRA阶梯背模型进行了外流场数值模拟与试验验证;根据仿生非光滑表面减阻理论,确定了凹坑型非光滑单元体的布置位置及尺寸,并对凹坑型非光滑单元体结构因素对减阻特性的影响进行仿真分析;并基于正交实验设计对凹坑型单元体的结构因素进行优化,仿真表明最优结构组合的减阻率可达10.54%;最后从压差阻力、诱导阻力和摩擦阻力3个方面对凹坑型非光滑单元体最优结构组合改进前后的减阻机理进行了对比分析,显著提高了车身的减阻效果。  相似文献   

2.
以Mira斜背式模型为研究对象,将凹坑型非光滑单元结构引入到Mira模型的尾部。以气动风阻系数最小为优化目标,采用多岛遗传算法对凹坑型非光滑单元结构的特征参数进行优化设计。首先对凹坑型非光滑单元结构的特征参数进行实验设计,分析各参数对优化目标的贡献率;其次根据样本点与其响应值之间的数学关系,构建可信度高的Kriging近似模型;最后以此近似模型为基础,在各参数范围内寻求最优解。研究结果表明:在Mira斜背式模型尾部布置凹坑深度为6 mm、横向间距为37 mm、纵向间距为45 mm、直径为41 mm的凹坑型非光滑单元结构,减阻率最显著可达到8.3%。  相似文献   

3.
为减小高速列车在运行过程中的气动阻力,提出一种基于边界层控制的减阻技术。以CRH3高速列车为研究对象,通过在车体表面加设球窝非光滑表面来控制边界层的湍流特性,实现列车运行减阻效果;通过PRO/Engineer三维软件建立了高速列车模型、参数化的球窝模型和计算域模型,在不影响研究效果的前提下,对高速列车模型进行简化处理以减少数值仿真计算周期;为使网格能够更好地贴合流线型车体和球窝非光滑表面,采用ICEM CFD软件对计算域进行非结构网格划分;在考虑列车表面粗糙度对气动阻力的影响工况下,应用商业流体软件FLUENT中的k-ε湍流模型对列车在300km·h~(-1)明线运行工况下的列车外流场进行数值仿真分析。仿真结果表明:只在尾车加设球窝非光滑表面更有利于列车减阻,且随球窝的半径、深度和阵列距离的增大,列车的气动阻力均呈先下降后上升的趋势;当球窝阵列距离为350mm,球窝半径为80mm,球窝深度为10mm时,球窝非光滑表面的减阻效果最好,此时气动阻力为2 220.4N,没有加设球窝非光滑表面的列车气动阻力为2 967.9N,减阻率可达25.19%。可见,采用球窝非光滑表面来改变边界层湍流特性是降低列车气动阻力的有效途径。  相似文献   

4.
为减少高速列车在运行中的气动阻力及噪声,提高列车运行效率、节约能耗,提升旅客乘坐舒适度,提出凸包非光滑表面减阻技术应用于高速列车领域。以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻、降噪效果。首先,利用PRO/Engineer建立非光滑表面CRH3高速列车简化模型,采用ICEM CFD软件对模型划分非结构网格;其次,应用Fluent流体仿真软件基于标准模型对稳态运行速度为300 km/h时的列车进行仿真计算空气阻力;最后,利用宽频带噪声模拟气动性能良好的列车外表面噪声。结果显示:将间距为460 mm、半径为40 mm、高度为10 mm的凸包阵列结构布设在前挡风玻璃周围对减小气动阻力有积极作用,阻力值为3 715 N,减阻率为1.77%,而此参数凸包非光滑对列车裙板上缘有普遍降噪效果,最大降噪率为1.72%,而对车鼻处及车顶部则会增加噪声。研究表明,通过在头车加设凸包可以改变边界层湍流特性达到减小列车气动阻力及降低部分位置气动噪声的效果。  相似文献   

5.
高速列车受电弓杆件减阻降噪研究分析   总被引:1,自引:0,他引:1  
高速列车受电弓是列车高速运行时气动阻力和气动噪声的主要来源之一。为探索受电弓杆件的减阻降噪方法,基于仿生学思想将高速列车受电弓光滑表面设计成螺纹型非光滑结构,同时研究在螺距和螺纹直径参数下对气动阻力和气动噪声的影响。选取高速列车受电弓杆件的典型尺寸建立流体仿真分析模型,采用非结构化混合网格,利用Standard k-ε湍流模型及宽频噪声模型,通过数值方法计算流场的分布特征和气动噪声大小。计算结果表明:螺纹型非光滑结构能更好地影响圆柱体尾涡区的形成,是有效降低高速列车受电弓杆件气动阻力和气动噪声的关键。为了进一步探究螺纹型非光滑结构杆件对高速列车受电弓减阻降噪的影响,设计了凹槽螺纹型和凸陷螺纹型两种不同结构杆件,分别在不同的螺距和螺纹直径参数下进行流场计算结果分析。结果表明,在350 km/h的风速下,螺距和螺纹直径参数一定时,凸陷螺纹型杆件的减阻降噪效果要优于凹槽螺纹型结构;其中,螺距PPD=60 mm,螺纹直径d=1 mm的凹槽螺纹型杆件具有最优减阻降噪效果,单个杆件的减阻率达3%;而对于凹槽螺纹型杆件类型,螺距PPD一定时,d/D的比值在0.017~0.067范围内,随着螺纹直径d的增大气动阻力和气动噪声均升高,当d/D数值超过0.067之后有显著降低气动阻力和气动噪声的趋势。  相似文献   

6.
考虑凹槽与凹坑织构之间的协同润滑效应,在曲轴轴承表面设计了抛物线凹槽-球形凹坑复合织构,以改善轴承的润滑性能;为了分析抛物线凹槽-球形凹坑复合织构对曲轴轴承润滑性能的影响,基于平均Reynolds方程和Greenwood-Tripp微凸体接触方程构建了曲轴轴承的混合润滑模型,并采用质量守恒的边界条件处理油膜的破裂和再形成行为,分析了凹槽织构、凹坑织构与凹槽-凹坑复合织构的摩擦学性能,研究了凹槽-凹坑复合织构的分布位置和结构参数对轴承承载力和摩擦力的影响。分析结果表明:凹槽-凹坑复合织构具有高于凹槽织构的承载力和低于凹坑织构的摩擦力;存在最优的凹槽宽度为1.3mm,凹槽面积率为0.7,凹槽最大深度为25μm,凹坑数量为6,凹坑面积率为0.7,凹坑最大深度为20μm,使得轴承量纲为1的承载力最大;存在最优的凹槽宽度为2.6mm,凹槽面积率为0.7,凹槽最大深度为30μm,凹坑数量为15,凹坑面积率为0.7,凹坑最大深度为35μm,使得轴承量纲为1的摩擦力最小;当凹槽-凹坑复合织构的分布位置、结构参数取最优值时,相对于无织构轴承而言,轴承的承载力提高了4.1%,摩擦力减小了19.6%。  相似文献   

7.
为研究时速380 km/h的新一代高速列车,北车长客公司设计了新一代头型,通过数值模拟技术,对比研究了新头型与原型车的气动特性,模拟结果表明:计算结果与风洞试验结果吻合良好,CRH380CL头型气动性能全面优于CRH3C头型;各项减阻措施中,头型优化、车底整流均有明显减阻效果,特别车底整流的减阻效果可以推广应用于长大编组情况.  相似文献   

8.
在内燃机曲轴系统的径向滑动轴承表面设计了球形凹坑织构,以改善润滑性能;为了获得最大的轴承承载力和最小的摩擦因数,提出了基于序列二次规划算法和遗传算法的混合进化优化方法,构建了径向滑动轴承球形凹坑织构的优化模型,对凹坑织构的分布位置和结构参数进行了全局寻优,得到了给定工况下最优的织构角度和最大深度;为了求解径向滑动轴承的承载力和摩擦因数,考虑曲轴和轴承表面粗糙度对油膜流动的影响,采用质量守恒的JFO空穴算法处理油膜的破裂和再形成行为,基于平均Reynolds方程和Greenwood-Tripp微凸体接触方程构建了球形凹坑织构径向滑动轴承的混合润滑模型,分析了球形凹坑织构的分布位置和结构参数(数量、面积率和最大深度)对径向滑动轴承承载力和摩擦因数的影响。分析结果表明:径向滑动轴承的承载力和摩擦因数是凹坑面积率的单调函数;存在最优的凹坑织构角度和最大深度使得径向滑动轴承的承载力最大与摩擦因数最小;当偏心率由0.3增加到0.7时,轴承承载力的提升量由13.38%下降到0.62%,摩擦因数的降低量由0.73%逐渐下降至负数,因此,当偏心率较小时,球形凹坑织构能够有效降低径向滑动轴承的摩擦因数,增大承载力,当偏心率较大时,球形凹坑织构无益于轴承摩擦因数的降低。  相似文献   

9.
悬索管道桥是一种经济、便捷且受力性能较好的油气运输管道工程跨越方式,但是其结构形式对于风荷载尤为敏感。通过风洞试验研究了两种悬索管道桥双管断面在不同管道间距、不同管道直径、不同篦子板透孔率、不同风攻角等条件下的静三分力系数。研究结果表明:管道布置位置、管道直径、篦子板透风率对静三分力系数影响非常明显;双管道断面气动特性存在明显的双管气动干扰和桁架气动干扰效应。  相似文献   

10.
基于仿生学的基本原理,提出一种能降低发动机进气喉管阻力的仿生非光滑结构形式,并以170F柴油机进气道为分析对象,利用计算流体力学方法研究了仿生非光滑进气喉管对发动机进气阻力的影响。建立170F型柴油机进气道Fluent分析模型(发动机进气道内空气流动域、边界条件及初始条件),进气道气体的湍流现象采用SST k-ω模型模拟。为提高计算效率,对计算域进行多块离散。进气道内的空气流动仿真分析结果表明:在进气道喉管处添加凹坑型非光滑表面后,进气道进气阻力减小14.2%左右,流通系数提高1.2%左右。  相似文献   

11.
为了抑制宽幅流线型箱梁涡激振动,以青山长江大桥(大跨度宽幅流线型钢箱梁斜拉桥)为背景,通过1:50节段模型风洞试验,在低阻尼条件下研究了主梁的涡振性能以及不同气动措施包括风嘴、检修车轨道、导流板、抑振板和检修道栏杆对涡振性能的影响.结果表明:采用外形较锐的风嘴可改善主梁的气动性能;通过改变检修车轨道位置、轨道支架高度及在其两侧设置导流板对抑制涡振效果不明显;在防撞栏杆后按隔五封一方式布置抑振板,可以使竖向涡振振幅降低45%;高透风率的圆形截面检修道栏杆可显著改善主梁的涡振性能,使涡振振幅降低63%,并且该措施不会影响桥梁美观性、便于工程应用.通过1:27大比例尺节段模型风洞试验,对高透风率圆形截面检修道栏杆的抑振措施进行了验证,结果表明该措施可有效抑制宽幅流线型箱梁涡振.   相似文献   

12.
中国高速列车气动减阻优化综述   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减...  相似文献   

13.
大跨度双层桁架梁悬索桥颤振性能试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高大跨度双层桁架梁悬索桥的颤振性能,以主跨为1 700 m的杨泗港长江大桥为工程背景,通过节段模型风洞试验,分别研究了上中央稳定板、下稳定板、水平翼板以及组合措施对主梁颤振性能的影响,并通过将有效气动措施与主梁原有构件相结合的方法来减小传统气动措施带来的不利影响,针对最优气动方案,研究了阻尼比对主梁颤振性能的影响. 研究结果表明:原主梁断面在0° 和 +3° 攻角下发生了没有明显发散点的单自由度扭转软颤振,颤振临界风速分别为50.5 m/s和31.2 m/s;安装于上层桥面的上中央稳定板、下层桥面的下稳定板以及与人行道底部齐平的水平翼板均能不同程度地提高主梁的颤振稳定性;当把水平翼板与下层桥面的下稳定板组合后,主梁的颤振临界风速增长率可高达34%,在此基础上提出了将上层托架和人行道板加宽、并将下稳定板和检修车轨道相结合的最优气动方案;当扭转阻尼比由0.37%增加至0.52%时,主梁的颤振临界风速可提高11.9%,说明阻尼器可能对发生单自由度扭转软颤振的桥梁起到良好的抑振效果.   相似文献   

14.
为减少钝头列车的气动阻力,对车头圆顶、车体底罩、车间风挡的假想模型进行数值模拟计算。结果表明:钝头列车加装车体底罩及车头前部圆顶等结构,并以高于100km/h的速度运行时,减阻效果良好,行驶速度越高,减阻效果越明显。  相似文献   

15.
为研究列车进出风屏障段时所受突风效应的影响,以一高速铁路多跨简支梁桥为研究对象,通过风洞试验测试了风屏障在100.0%、43.5%和0透风率情况下车-桥系统的气动特性;基于哑元耦合法,建立了风-车-桥系统分析模型,开展了两种风屏障布置形式(通长和非通长)时风屏障透风率和列车车速对列车动力响应的影响分析. 研究结果表明:设置风屏障时桥上列车的气动特性存在较大差异,尤其列车气动阻力系数在风屏障透风率0比透风率100.0%时减少87%;当风屏障通长布置时,风屏障防风效果显著,随着透风率的减小,列车动力响应大幅减小,其中轮重减载率减小达53%;当风屏障非通长布置情况时,列车在进入和离开风屏障区段时,突风效应对列车的横向加速度和竖向加速度均影响显著,透风率越低,加速度响应变化越剧烈,但对于轮轴横向力和轮重减载率的影响有限;随着车速的提高,突风效应造成的加速度响应总体上增大,呈明显的非线性变化.   相似文献   

16.
文章基于江苏徐州地区温度气候状况,利用ABAQUS建立以发热电缆为电加热介质的桥面温度场数值模型,研究了发热电缆融冰化雪工程中发热电缆布设方式对冬季桥面温度场的影响。结果表明:桥面的温度场分布和桥面升温时间受发热电缆的线功率、布设深度和布设间距影响较大;发热电缆周围温度梯度较大,增加发热电缆的线功率、减小布设深度和布设间距,可以加快桥面升温速度,从而提高融冰化雪效率。通过对融冰化雪效率、效果、经济性和施工便捷性的综合考虑,建议发热电缆布设的线功率采用28 W/m,布设深度为10 cm,布设间距为10 cm。  相似文献   

17.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。   相似文献   

18.
利用ABAQUS建立以发热电缆为电加热介质的桥面温度场数值模型,基于江苏徐州地区温度气候状况,研究了发热电缆融冰化雪工程中发热电缆线功率、布设深度和布设间距对冬季桥面温度场的影响。结果表明:温度梯度较大位置处于发热电缆周围。桥面的温度场分布和桥面升温时间受发热电缆的线功率、布设深度和布设间距影响较大;加快桥面升温速度可以增加发热电缆的线功率、减小布设深度和布设间距,从而提高融冰化雪效率。通过对融雪化雪效率效果、经济性和施工便捷性的综合考虑,建议发热电缆布设的线功率采用28 w/m,布设深度为10 cm,布设间距为10 cm。  相似文献   

19.
以高速列车受电弓弓头为研究对象,应用Fluent软件对弓头气动特性进行数值模拟,对受电弓弓头结构进行优化,提出了下表面波浪形新型弓头结构,探究弓头下表面结构对气动特性的影响。首先,以方柱绕流为研究对象进行湍流模型验证,结果表明使用Transition SST湍流模型对弓头二维模型进行数值仿真是可行的。其次,以CX-NG型受电弓为基础建立了传统方形弓头模型,对其进行模拟计算。最后,对受电弓弓头进行下表面结构改形设计,将下半部分外形优化为凹、凸波浪形。在不同速度下,建立弓头周围流场的速度与压力云图,将凹、凸形弓头与传统方形弓头进行气动特性对比,分析不同外形结构对流场的影响。对比分析发现,使用凸形受电弓弓头能够达到较好的减阻效果。在3种列车运行速度下,阻力系数Cd分别减少了10.26%、11.23%、12.69%。  相似文献   

20.
钢棒加强式轨枕道床的纵横向阻力试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
井国庆  王新雨  周强  姚力 《西南交通大学学报》2021,56(6):1192-1196, 1213
为了探究钢棒加强式轨枕的纵横向阻力机理、分担以及钢棒插入深度和砟肩宽度的影响规律,为川藏铁路长大坡道韧性和稳定性增强提供新方法,通过进行一系列纵横向阻力试验得到了钢棒加强式轨枕纵横向阻力的总体特性和分担情况;通过改变钢棒插入深度和砟肩宽度探究了两者对钢棒加强式轨枕纵横向阻力的影响规律. 结果表明:与普通轨枕相比,钢棒加强式轨枕的纵横向阻力都有提高,当砟肩宽度为500 mm,堆高为0,钢棒插入深度为400 mm时,钢棒加强式轨枕纵横向阻力比肩宽为500 mm、堆高为150 mm条件下普通轨枕分别高39.2%和53.7%,枕底部分横向阻力分担比普通轨枕提升8%,纵向阻力提升26%;钢棒插入深度对道床阻力影响较大,在砟肩宽度为500 mm、堆高为0 时,插入深度由100 mm变至400 mm,相较于普通轨枕肩宽为500 mm、堆高为150 mm的工况,纵向阻力增幅由5.1%变至39.2%,横向阻力增幅由6.1%变至53.7%;砟肩宽度变化时,纵向阻力变化较小,横向阻力变化较大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号