首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在考虑翻新轮胎主体结构及多元复合材料结合性能基础上,应用复合材料层合结构和有限元大变形理论,构建了11R22.5载重车辆翻新轮胎的力学模型、几何模型及有限元模型,通过轮胎承载性能试验,对翻新轮胎的承载变形特性进行了仿真分析和试验研究,并与同品牌、同型号新轮胎进行了对比分析。根据翻新轮胎承载变形特性变化规律,修正了翻新子午线轮胎变形理论计算公式。分析结果表明:当充气压力一定时,随着载荷的增大,载重车辆翻新轮胎径向变形、侧向变形、接地长度及接地面积均增大,变形规律近似线性,而径向刚度变化不大;当载荷一定时,随着充气压力的增大,其径向变形、侧向变形、接地长度及接地面积均减小,而径向刚度逐渐增大。研究得出翻新轮胎胎体弹性模量较新轮胎胎体大,且两者之差越大,说明翻新轮胎的胎体老化程度越高,其剩余使用寿命越低,据此可有利于对翻新轮胎胎体老化程度进行预测。  相似文献   

2.
为深入了解工程翻新轮胎在使用中出现的胎面磨损加剧、崩花掉块、胎面脱层、被压爆、刺爆等失效形式,确定26.5R25工程车辆翻新轮胎各层应力约束条件及剪切应力约束条件、计算机几何模型、有限元分析模型。对工程车辆翻新轮胎自由充气、自由旋转工况的各层综合应力及剪切应力分布状况进行数值模拟分析,获得工程车辆翻新轮胎在自由充气及自由旋转工况下各层的应力、剪切应力、弹性应变及应变能量密度分布及变化规律。结果表明:工程翻新轮胎胎体层(0.81 MPa)及胎面层的胎肩部位所受应力最大(2.23 MPa),带束层次之(0.42 MPa),胎体层及带束层为主要承力部件,缓冲层与带束层之间存在较大的剪切应力(0.001 MPa)。翻新前要加强胎体层及带束层的质量检测,翻新时要加强带束层与缓冲层的粘合强度。研究成果可为工程翻新轮胎的结构设计、使用性能及动力性能、失效机理分析等提供重要理论指导。  相似文献   

3.
为进一步明确翻新轮胎的力学性能并提高其使用寿命,构建工程车辆翻新轮胎静态接地工况三维模型、轮胎与地面接触模型、静态接地工况有限元分析模型及承载-接地力学特性试验系统。分析结果表明:静态接地工况、接地压力及接地摩擦力在轮胎与地面接触区域内中心位置达到最小值,沿轮胎滚动方向及宽度方向呈现不同程度增大的"V"型分布规律;当载荷较小时,接地印痕形状近似为圆形,随着载荷不同程度地增大,其形状变化由近似圆形到近似椭圆形,再到近似矩形,最后到近似马鞍形的变化规律;当胎压一定时,随着载荷的增加,接地面积逐渐增大,增大趋势呈现非线性变化规律;工程翻新轮胎胎肩部位接地压力及接地摩擦力均最大,该部位较容易发生橡胶崩花掉块、撕裂脱层的失效损坏现象。  相似文献   

4.
分析了轮胎临界速度的影响因素,在合理假设的基础上,根据振动理论建立了轮胎使用的力学模型,得出轮胎变形恢复时间与其有效质量之间的关系。结果发现影响轮胎临界速度的使用因素包括负荷、充气压力、径向变形和胎面磨损量,载荷一定时,提高轮胎充气压力,充气压力一定时,减轻载荷都有利于提高轮胎使用的临界速度。分析结果与轮胎的实际应用情况相符,说明该模型可行。  相似文献   

5.
针对11R22.5载重车辆翻新子午线轮胎,对翻新轮胎的接地力学进行了描述,建立了翻新轮胎层合结构的复合材料有限元模型,利用ANSYS非线性大变形求解方法进行了翻新轮胎接地压力、接地面积及接地印痕等方面的有限元仿真,并进行了试验研究,得出翻新轮胎接地力学方面与同型号新轮胎相比存在一定的差异.  相似文献   

6.
建立了基于非线性轮胎侧偏特性的四轮车辆数值模型,考虑了轮胎垂直载荷的侧向转移,用该模型计算了车辆转向角阶跃输入下的侧向速度和横摆角速度响应,计算结果表明车辆质心纵向位置对车辆侧向响应特性具有较大的影响,而车辆转动惯量和轮间距对车辆侧向响应特性几乎没有影响.车辆响应特性随车辆质心纵向位置约呈指数关系变化,车辆质心越向前移,横摆角速度的响应也越快但超调量也随之增加.  相似文献   

7.
在考虑载重车辆轮胎材料非线性、接触非线性以及大变形等复杂力学特性基础上,依据有限元理论,借助Pro/E与ANSYS软件,对载重车辆轮胎进行有限元研究,获得轮胎在多种工况条件下受力及工作性能状况,为进一步进行子午线轮胎动态接触分析和结构优化设计奠定了基础。  相似文献   

8.
工程翻新轮胎在使用过程中会有无数个振动,但一些频率较低的振动将会对其失效破坏产生较大影响,如果轮胎在100Hz以下共振,将会产生较大破坏。因此,分析工程翻新轮胎低阶振动频率及振型对实际应用的意义较大。构建工程车辆翻新轮胎的计算机几何模型、接触对模型、有限元分析模型,采用Lanczos法对工程翻新轮胎进行模态分析,数值模拟分析轮辋约束及地面接触约束两种工况下的前20阶固有频率和振型。得出以下结论:轮辋约束工况下,1、2、5、6、9、10、15、16、17阶振型为圆形,3、4、7、8、18、19、20阶振型为椭圆形,11、12阶振型为三角形,13、14阶振型为四边形,其中2~5阶、11~20阶振型的变化幅度较大;静态接地工况下,1、2、3、4、5、6、9、10、13、14、20阶振型为圆形,7、8阶振型为椭圆形,11、12阶振型为三角形,15、16阶振型为四边形,17、18、19阶振型为五边形,其中3~5阶的振型变化幅度较大。研究成果可为工程翻新轮胎的结构设计、使用性能及动力性能、失效机理分析提供重要理论指导。  相似文献   

9.
为了有效提高工程车辆翻新轮胎质量,以碳纤维作为增强体,工程翻新轮胎胎面作为基本体,通过设计复合材料的配方、黏合体系和混炼工艺,分析了经改性处理的碳纤维对胎面橡胶基体力学性能的影响。构建了碳纤维与胎面橡胶复合强化混合物理模型和分散物理模型。分析了碳纤维与胎面橡胶黏结状态及黏结机理。为获得高性能的碳纤维增强工程翻新轮胎奠定理论基础。  相似文献   

10.
为了研究匝道路面的摩擦系数,基于车辆动力学理论,采用CarSim仿真软件,建立了匝道上的车-路模型;设计了不同速度下正常行驶及制动2种典型行驶工况,选取了评价车辆行驶状态的3个安全性指标——制动距离d、侧向偏移距离l、峰值附着系数μmax,及3个舒适性指标——侧向加速度ay、横摆角速度ω及制动减速度(即纵向加速度)ax,确定了各指标阈值;根据仿真模拟试验获得的车辆行驶数据进行安全性和舒适性分析,得到了峰值附着系数μmax与车速V、坡度i的关系曲线;采用线性和非线性回归分析法对匝道路面摩擦系数μ0进行拟合计算,得到了基于V-i二元因素的匝道路面摩擦系数拟合公式。结果表明:匝道路面摩擦系数随着车速的增大而增加且增幅不断加大,随着匝道坡度的增大而减小但变化幅度较为稳定;拟合公式可以较为准确地预测匝道路面摩擦系数。  相似文献   

11.
在确定工程翻新轮胎生命周期系统基础上,构建了基于生命周期理论的工程翻新轮胎成本分析模型、利润分析模型、环境成本-环境利润分析模型,提出了经济评价指标;对生产阶段、运输阶段、使用阶段及再利用阶段(普通翻新、石墨烯增强翻新、机械粉碎、低温粉碎、燃烧分解、燃烧发电等)工程轮胎的成本-利润进行了分析与评价。结果表明:工程轮胎生产阶段的成本最高,运输阶段的成本最低;再利用工程轮胎的利润成本比以采用石墨烯增强体增强翻新方式的为最高,采用普通翻新方式的次之,采用燃烧发电方式的最低。  相似文献   

12.
1轮胎使用寿命的影响因素 (1)轮胎负荷.轮胎的负荷量是根据轮胎的结构、帘布层数、强度、标准气压以及车辆行驶速度等参数经计算而确定的.如果轮胎在超负荷条件下行驶,轮胎的变形部位会扩大,尤其是胎侧的弯曲变形增大,触地面积随之增大,结果胎肩磨损增加.另外,超载加剧了轮胎胎体材料分子间的内摩擦及胎面与路面间的外摩擦,产生的热量大于设计标准,使胎体温度升高超过正常值,会造成帘布的脱层,使轮胎磨损加剧.  相似文献   

13.
恶劣天气路面条件对行车安全的影响   总被引:1,自引:0,他引:1  
利用多体动力学仿真软件ADAMS/Car,建立了车辆的动力学模型、道路模型以及车-路耦合模型,通过改变路面摩擦因数,分别模拟了晴天、雨天、雪天和结冰条件下的路面状况,进行了单移线和阶跃转向2种常见行驶工况的仿真试验,得到了车辆的侧向位移、航向角以及轮胎的侧向反力的响应输出,分析了研究恶劣天气路面条件对行车安全的影响.计...  相似文献   

14.
为研究路面条件对行车安全的影响,作者利用多体动力学仿真软件ADAMS/Car与ADAMS/Solve建立了车辆模型、道路模型、驾驶员模型以及^一车一路的耦合模型,并通过改变路面摩擦系数,分别模拟了晴天、雨天、雪天和在结冰状况下的路面条件,并进行了闭环仿真试验,得到了车辆的侧向位移、At向角以及轮胎的侧向反力的响应输出,分析了不同路面条件对行车安全的影响。计算结果表明:随着路面条件的恶化,驾驶员操纵方向盘的转动角速度突变增加;当结冰路面摩擦系数为0.18时,左右后轮侧向力均趋于0,会导致车辆绕前轮旋转,甚至失去控制。  相似文献   

15.
为获得不同软弱层特性条件下斜坡软弱地基路堤的变形规律,建立了斜坡软弱地基在路堤自重荷载作用下的非线性有限元数值模型,探讨了软弱层特性各因素对斜坡软弱地基路堤变形的影响;通过正交试验设计,对软弱层特性各因素对变形影响的显著性进行了评价.结果表明:软弱层土体弹性模量、软弱层厚度是产生过大竖向沉降和侧向变形的决定性因素;地面横坡的存在是加剧地基变形的重要因素;当软弱层位于地基顶面时,对地基变形尤其是侧向变形影响显著;应综合考虑软弱层特性各因素的影响,采取地基处理、侧向约束等工程措施限制变形.   相似文献   

16.
为研究车辆对大位移伸缩缝振动特性的影响,考虑轮胎载重车辆过大位移桥梁伸缩缝时的真实激励特性,提出了一种载重车辆-伸缩缝耦合系统垂向动力学模型,同时引入新型快速积分法对数值模型进行求解.以ZL1600模数式大位移伸缩缝为研究对象,通过仿真结果与试验测试结果的对比验证模型有效性,并基于此模型分析了轮胎载重车辆对大位移伸缩缝的冲击效应.研究结果表明:中梁测点垂向速度的动力学模型仿真结果能较好地匹配试验测试结果,仿真得到中梁测点最大下沉位移的偏差均小于10.0%,表明该模型具有较高的计算精度;车辆轮胎力的最大冲击系数出现在车轮驶上伸缩缝后方桥面时,需要考虑对此处结构进行加强;车辆轮胎对伸缩缝中梁和后方桥面的冲击系数均随车速的增大而增大,最大冲击系数分别为0.67和0.82,均超过了国内现行规范的推荐值0.45,应得到重视.  相似文献   

17.
通过分析有自由段充填注浆的预应力锚索的动态工况特征和边界条件,基于锚注体.围岩界面径向与轴向变形协调条件,建立了等效介质模型.采用柱状空间内的Mindlin积分解和轴对称径向膨胀力Mindlin解,导出了内锚固段轴力分布和预应力作用下的荷载-变位关系方程。结合原位试验结果,分析、比较了荷载.变位特征曲线及轴力分布形态。  相似文献   

18.
为有效评定轮胎翻新对社会、环境及企业的影响程度,基于生命周期理论,确定载重车辆翻新轮胎生命周期组成,构建翻新轮胎生命周期能量消耗模型、碳排放模型及经济性模型;提出轮胎翻新、机械粉碎、低温粉碎、燃烧分解、燃烧发电等5种再利用方式的能量替代模型、碳削减模型及成本利润模型;提出翻新轮胎生命周期能量消耗、碳排放及经济性评价指标;定量分析翻新轮胎生命周期各个阶段的能量消耗、碳排放量及成本利润,获得翻新轮胎5种再利用方式的能源恢复率、碳削减率及利润成本比。结果表明:翻新轮胎生产阶段的能量消耗、碳排放量均最大,运输阶段的能量消耗、碳排放量均最小;5种再利用方式中轮胎翻新的能量回收效果、碳削减率及经济性均较为理想,是废旧轮胎再利用的有效途径。  相似文献   

19.
轮胎滑水性能对车辆安全性和操控性具有决定性影响,而花纹结构设计参数直接影响着轮胎接地区水流运动进而对轮胎滑水性能也会产生直接影响。但由于滚动轮胎的滑水性能测试条件极为苛刻,且很难捕获到滑水现象发生时水流运动流场特性。为明晰滑水现象发生时的流场特性及花纹结构设计参数对滑水性能的影响,基于计算流体动力学的方法,建立考虑轮胎接地印痕及花纹变形特征的滑水分析模型,掌握了水膜升力、自由液面及沟槽内水流速度等流场分布特征,分析了水膜厚度、水流速度、纵向花纹及横花纹结构设计对滑水性能的影响。结果表明:在水膜厚度较小时,路面水流可顺畅进入接地区花纹沟并被及时排出;水流速度的变化对胎面动水压力有显著影响;纵向花纹沟深度对滑水性能影响显著;改变横向花纹沟水流运动方向、降低胎面动水压力可提升滑水性能。  相似文献   

20.
引入轮胎魔术公式,建立了车辆的两自由度非线性动力学模型.以车辆质心侧偏角和横摆角速度为控制变量,基于车辆的线性动力学模型设计了最优控制器,将此控制器应用于非线性动力学模型并进行了仿真.结果表明,车辆电子稳定性程序显著提高了车辆的操纵稳定性,使驾驶员在大侧向加速度、大侧偏角的极限工况下能够对车辆进行正常操纵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号