共查询到20条相似文献,搜索用时 0 毫秒
1.
The idea of deploying unmanned aerial vehicles, also known as drones, for final-mile delivery in logistics operations has vitalized this new research stream. One conceivable scenario of using a drone in conjunction with a traditional delivery truck to distribute parcels is discussed in earlier literature and termed the parallel drone scheduling traveling salesman problem (PDSTSP). This study extends the problem by considering two different types of drone tasks: drop and pickup. After a drone completes a drop, the drone can either fly back to depot to deliver the next parcels or fly directly to another customer for pickup. Integrated scheduling of multiple depots hosting a fleet of trucks and a fleet of drones is further studied to achieve an operational excellence. A vehicle that travels near the boundary of the coverage area might be more effective to serve customers that belong to the neighboring depot. This problem is uniquely modeled as an unrelated parallel machine scheduling with sequence dependent setup, precedence-relationship, and reentrant, which gives us a framework to effectively consider those operational challenges. A constraint programming approach is proposed and tested with problem instances of m-truck, m-drone, m-depot, and hundred-customer distributed across an 8-mile square region. 相似文献
2.
Once limited to the military domain, unmanned aerial vehicles are now poised to gain widespread adoption in the commercial sector. One such application is to deploy these aircraft, also known as drones, for last-mile delivery in logistics operations. While significant research efforts are underway to improve the technology required to enable delivery by drone, less attention has been focused on the operational challenges associated with leveraging this technology. This paper provides two mathematical programming models aimed at optimal routing and scheduling of unmanned aircraft, and delivery trucks, in this new paradigm of parcel delivery. In particular, a unique variant of the classical vehicle routing problem is introduced, motivated by a scenario in which an unmanned aerial vehicle works in collaboration with a traditional delivery truck to distribute parcels. We present mixed integer linear programming formulations for two delivery-by-drone problems, along with two simple, yet effective, heuristic solution approaches to solve problems of practical size. Solutions to these problems will facilitate the adoption of unmanned aircraft for last-mile delivery. Such a delivery system is expected to provide faster receipt of customer orders at less cost to the distributor and with reduced environmental impacts. A numerical analysis demonstrates the effectiveness of the heuristics and investigates the tradeoffs between using drones with faster flight speeds versus longer endurance. 相似文献
3.
This paper introduces a new vehicle routing problem transferring one commodity between customers with a capacitated vehicle that can visit a customer more than once, although a maximum number of visits must be respected. It generalizes the capacitated vehicle routing problem with split demands and some other variants recently addressed in the literature. We model the problem with a single commodity flow formulation and design a branch-and-cut approach to solve it. We make use of Benders Decomposition to project out the flow variables from the formulation. Inequalities to strengthen the linear programming relaxation are also presented and separated within the approach. Extensive computational results illustrate the performance of the approach on benchmark instances from the literature. 相似文献
4.
The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension to the well-known Vehicle Routing Problem with Time Windows (VRPTW) where the fleet consists of electric vehicles (EVs). Since EVs have limited driving range due to their battery capacities they may need to visit recharging stations while servicing the customers along their route. The recharging may take place at any battery level and after the recharging the battery is assumed to be full. In this paper, we relax the full recharge restriction and allow partial recharging (EVRPTW-PR), which is more practical in the real world due to shorter recharging duration. We formulate this problem as a 0–1 mixed integer linear program and develop an Adaptive Large Neighborhood Search (ALNS) algorithm to solve it efficiently. We apply several removal and insertion mechanisms by selecting them dynamically and adaptively based on their past performances, including new mechanisms specifically designed for EVRPTW and EVRPTW-PR. These new mechanisms include the removal of the stations independently or along with the preceding or succeeding customers and the insertion of the stations with determining the charge amount based on the recharging decisions. We test the performance of ALNS by using benchmark instances from the recent literature. The computational results show that the proposed method is effective in finding high quality solutions and the partial recharging option may significantly improve the routing decisions. 相似文献
5.
The vehicle routing problem (VRP) is a critical and vital problem in logistics for the design of an effective and efficient transportation network, within which the capacitated vehicle routing problem (CVRP) has been widely studied for several decades due to the practical relevance of logistics operation. However, CVRP with the objectives of minimizing the overall traveling distance or the traveling time cannot meet the latest requirements of green logistics, which concern more about the influence on the environment. This paper studies CVRP from an environmental perspective and introduces a new model called environmental vehicle routing problem (EVRP) with the aim of reducing the adverse effect on the environment caused by the routing of vehicles. In this research, the environmental influence is measured through the amount of the emission carbon dioxide, which is a widely acknowledged criteria and accounts for the major influence on environment. A hybrid artificial bee colony algorithm (ABC) is designed to solve the EVRP model, and the performance of the hybrid algorithm is evaluated through comparing with well-known CVRP instances. The computational results from numerical experiments suggest that the hybrid ABC algorithm outperforms the original ABC algorithm by 5% on average. The transformation from CVRP to EVRP can be recognized through the differentiation of their corresponding optimal solutions, which provides practical insights for operation management in green logistics. 相似文献
6.
This paper presents a continuous approximation model for the period vehicle routing problem with service choice (PVRP-SC). The PVRP-SC is a variant of the period vehicle routing problem in which the visit frequency to nodes is a decision of the model. This variation can result in more efficient vehicle tours and/or greater service benefit to customers. We present a continuous approximation model to facilitate strategic and tactical planning of periodic distribution systems and evaluate the value of service choice. Further, results from the continuous model can provide guidelines for constructing solutions to the discrete PVRP-SC. 相似文献
7.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions. 相似文献
8.
文章针对带时间窗约束的混合车辆路径问题的特点,建立了带时间窗的混合车辆路径问题的数学模型,并设计了变邻域禁忌搜索算法对该问题进行求解。通过标准算例测试及与现有文献计算结果的比较,验证了该算法的有效性。 相似文献
9.
This paper addresses a Time Dependent Capacitated Vehicle Routing Problem with stochastic vehicle speeds and environmental concerns. The problem has been formulated as a Markovian Decision Process. As distinct from the traditional attempts on the problem, while estimating the amount of fuel consumption and emissions, the model takes time-dependency and stochasticity of the vehicle speeds into account. The Time Dependent Capacitated Vehicle Routing Problem is known to be NP-Hard for even deterministic settings. Incorporating uncertainty to the problem increases complexity, which renders classical optimization methods infeasible. Therefore, we propose an Approximate Dynamic Programming based heuristic as a decision aid tool for the problem. The proposed Markovian Decision Model and Approximate Dynamic Programming based heuristic are flexible in terms that more environmentally friendly solutions can be obtained by changing the objective function from cost minimization to emissions minimization. The added values of the proposed decision support tools have been shown through computational analyses on several instances. The computational analyses show that incorporating vehicle speed stochasticity into decision support models has potential to improve the performance of resulting routes in terms of travel duration, emissions and travel cost. In addition, the proposed heuristic provides promising results within relatively short computation times. 相似文献
10.
Abstract With the growth in population and development of business activities in Hong Kong, the range and level of services provided by Hongkong Post have multiplied. However, the schedule of its postal vehicles, including mail collection and delivery, is still constructed manually on a daily basis, based on the experience of staff and transportation reviews. In this paper, the problem of scheduling a set of n collection points (District Post Offices) from a depot (General Post Office) in Hong Kong Island is addressed. The objectives pursued are the maximization of resource utilization and minimization of operation costs. In other words, the variable cost is expected to be reduced. To achieve these goals, an integer linear programming (IP) model of the vehicle routing problem (VRP) is developed in an effort to obtain optimal solutions. As the model involves computational complexity, a commercial software package CPLEX is used to solve the problems efficiently. The results show that the proposed model can produce optimal vehicle routes and schedules. 相似文献
11.
12.
We create a mathematical framework for modeling trucks traveling in road networks, and we define a routing problem called the platooning problem. We prove that this problem is NP-hard, even when the graph used to represent the road network is planar. We present integer linear programming formulations for instances of the platooning problem where deadlines are discarded, which we call the unlimited platooning problem. These allow us to calculate fuel-optimal solutions to the platooning problem for large-scale, real-world examples. The problems solved are orders of magnitude larger than problems previously solved exactly in the literature. We present several heuristics and compare their performance with the optimal solutions on the German Autobahn road network. The proposed heuristics find optimal or near-optimal solutions in most of the problem instances considered, especially when a final local search is applied. Assuming a fuel reduction factor of 10% from platooning, we find fuel savings from platooning of 1–2% for as few as 10 trucks in the road network; the percentage of savings increases with the number of trucks. If all trucks start at the same point, savings of up to 9% are obtained for only 200 trucks. 相似文献
13.
S. Srivatsa Srinivas 《运输评论》2017,37(5):590-611
Vehicle routing problems (VRPs) whose typical objective is to minimise total travel costs over a tour have evolved over the years with objectives ranging from minimising travel times and distances to minimising pollution and fuel consumption. However, driver behaviour continues to be neglected while planning for vehicle routes. Factors such as traffic congestion levels, monotonous drives and fatigue have an impact on the behaviour of drivers, which in turn might affect their speed-choice and route-choice behaviours. The behaviour of drivers and their subsequent decision-making owing to these factors impact the revenue of transport companies and could lead to huge losses in extreme cases. There have been studies on the behaviour of drivers in isolation, without inclusion of the objectives and constraints of the traditional routing problem. This paper presents a review of existing models of VRP, planner behaviour models in the VRP context and driver behaviour models and provides a motivation to integrate these models in a stochastic traffic environment to produce practical, economic and driver-friendly logistics solutions. The paper provides valuable insights on the relevance of behavioural issues in logistics and highlights the modelling implications of incorporating planner and driver behaviour in the framework of routing problems. 相似文献
14.
Empirical studies have shown that demand for multimodal transport systems is highly correlated with activity schedules of individuals. Nonetheless, existing analytical equilibrium models of multimodal systems have only considered trip-based demand. We propose a new market equilibrium model that is sensitive to traveler activity schedules and system capacities. The model is based on a constrained mixed logit model of activity schedule choice, where each schedule in the choice set is generated with a multimodal extension of the household activity pattern problem. The extension explicitly accounts for both passenger choices of activity participation and multimodal choices like public transit, walking, and vehicle parking. The market equilibrium is achieved with Lagrangian relaxation to determine the optimal dual price of the capacity constraint, and a method of successive averages with column generation finds an efficient choice set of activity schedules to assign flows over the dynamic network load capacities. An example illustrates the model and algorithm, effects similar to Vickrey’s morning commute model can be observed as a special case. A case study of the Oakville Go Transit station access “last mile” problem in the Greater Toronto Area is conducted with 166 survey samples reflecting 3680 individuals. Results suggest that a $10 fixed parking fee at Oakville station would lead to a reduction of access auto share from 54.8% to 49.5%, an increase in access transit share from 20.7% to 25.9%, and a disutility increase of 11% for the of single-activity residents of Oakville. 相似文献
15.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment. 相似文献
16.
Abstract This paper concerns the newspaper distribution problem. It addresses the transportation of newspapers from printing plant to newsagents with distribution vehicles under various particular constraints. The objective is to minimize the distance traveled by the vehicles and/or the number of vehicles. In this study, the routes for vehicles of a leading newspaper distributor company in the Turkish press sector are examined. The problem is defined as determining optimal delivery routes for a fleet of homogeneous vehicles, starting and ending at the printing plant that is required to serve a number of geographically dispersed newsagents with known demands under capacity and time constraints, while minimizing the total distribution cost. An integar linear programming model is proposed as a solution using Cplex. Computational results demonstrate that the proposed model is fast and able to find optimal solutions for problem scenarios with up to 55 newsagents within reasonable computing times. It was found that the proposed model reduced the delivery cost by 21% on average when compared to the current manual method. The results show that this model is adequate for medium-sized distribution problems. 相似文献
17.
The purpose of this paper to present a cooperative scheduling algorithm for solving the Dynamic Pickup and Delivery Problem with Time Windows (DPDPTW). The idea behind cooperative waiting strategies is to calculate simultaneously the waiting times for all nodes in the solution. Classical non‐cooperative scheduling algorithms perform the scheduling for each route independently of the scheduling of the other routes. We present the Cooperative Scheduling Problem (CSP) based on the elliptical areas generated by vehicles waiting at their nodes. The CSP is solved by means of a genetic algorithm and is evaluated by using a set of benchmarks based on real‐life data found in the literature. Initially, two waiting strategies are presented: Wait‐Early‐Time scheduling and Balanced‐Departure scheduling. Extensive empirical simulations have been carried out by analyzing the degree of dynamism and the average waiting time, a new concept defined to take into account the gap between the time windows of pickup and delivery nodes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search. 相似文献
19.
This paper introduces a rolling horizon algorithm to plan the delivery of vehicles to automotive dealers by a heterogeneous fleet of auto-carriers. The problem consists in scheduling the deliveries over a multiple-day planning horizon during which requests for transportation arrive dynamically. In addition, the routing of the auto-carriers must take into account constraints related to the loading of the vehicles on the carriers. The objective is to minimize the sum of traveled distances, fixed costs for auto-carrier operation, service costs, and penalties for late deliveries. The problem is solved by a heuristic that first selects the vehicles to be delivered in the next few days and then optimizes the deliveries by an iterated local search procedure. A branch-and-bound search is used to check the feasibility of the loading. To handle the dynamic nature of the problem, the complete algorithm is applied repeatedly in a rolling horizon framework. Computational results on data from a major European logistics service provider show that the heuristic is fast and yields significant improvements compared to the sequential solution of independent daily problems. 相似文献
20.
Electric vehicles (EVs) are considered as a feasible alternative to traditional vehicles. Few studies have addressed the impacts of policies supporting EVs in urban freight transport. To cast light on this topic, we established a framework combining an optimization model with economic analysis to determine the optimal behavior of an individual delivery service provider company and social impacts (e.g., externalities and welfare) in response to policies designed to support EVs, such as purchase subsidy, limited access (zone fee) to congestion/low-emission zones with exemptions for EVs, and vehicle taxes with exemptions for EVs. Numerical experiments showed that the zone fee can increase the company’s total logistics costs but improve the social welfare. It greatly reduced the external cost inside the congestion/low-emission zone with a high population, dense pollution, and heavy traffic. The vehicle taxes and subsidy were found to have the same influence on the company and society, although they have different effects with low tax/subsidy rates because their different effects on vehicle routing plans. Finally, we performed a sensitivity analysis. Local factors at the company and city levels (e.g., types of vehicle and transport network) are also important to designing efficient policies for urban logistics that support EVs. 相似文献