首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the difficulty of obtaining accurate real-time visibility and vehicle based traffic data at the same time, there are only few research studies that addressed the impact of reduced visibility on traffic crash risk. This research was conducted based on a new visibility detection system by mounting visibility sensor arrays combined with adaptive learning modules to provide more accurate visibility detections. The vehicle-based detector, Wavetronix SmartSensor HD, was installed at the same place to collect traffic data. Reduced visibility due to fog were selected and analyzed by comparing them with clear cases to identify the differences based on several surrogate measures of safety under different visibility classes. Moreover, vehicles were divided into different types and the vehicles in different lanes were compared in order to identify whether the impact of reduced visibility due to fog on traffic crash risk varies depending on vehicle types and lanes. Log-Inverse Gaussian regression modeling was then applied to explore the relationship between time to collision and visibility together with other traffic parameters. Based on the accurate visibility and traffic data collected by the new visibility and traffic detection system, it was concluded that reduced visibility would significantly increase the traffic crash risk especially rear-end crashes and the impact on crash risk was different for different vehicle types and for different lanes. The results would be helpful to understand the change in traffic crash risk and crash contributing factors under fog conditions. We suggest implementing the algorithms in real-time and augmenting it with ITS measures such as VSL and DMS to reduce crash risk.  相似文献   

2.
There has been a growing interest in using surrogate safety measures such as traffic conflicts to analyse road safety from a broader perspective than collision data alone. This growing interest has been aided by recent advances in automated video‐based traffic conflict analysis. The automation enables accurate calculation of various conflict indicators such as time‐to‐collision and post‐encroachment time. These indicators rely on road users getting within specific temporal and spatial proximity from each other and therefore assume that proximity is a surrogate for conflict severity. However, this assumption may not be valid in many driving environments where close interactions between road users are common. The objective of this paper is to investigate the applicability of time proximity conflict indicators for evaluating pedestrian safety in less‐organized traffic environments with a high mix of road users. Several alternative behavioural conflict indicators based on detecting pedestrian evasive actions are recommended to better measure traffic conflicts in such traffic environments. These indicators represent variations in the spatio‐temporal gait parameters (step length, step frequency and walk ratio) immediately before the conflict point. A highly congested shared intersection in Shanghai, China, with frequent pedestrian conflicts is used as a case study. Traffic conflicts are analysed with the use of automated video‐based analysis techniques. The results showed that evasive action‐based indicators have higher potential to identify pedestrian conflicts and measure their severity in high mix less organized traffic environments than time proximity measures such as time‐to‐collision and post‐encroachment time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
It is computationally expensive to find out where vulnerable parts in a network are. In literature a variety of methods were introduced that use simple indicators (measured in real-life or calculated in a traffic simulator) to pre-determine the seriousness of the delays caused by the blocking of that link and thereafter perform a more detailed analysis. This article reviews the indicators proposed in the literature and assesses the quality of these indicators. Furthermore, a multi-linear fit of the indicators is made to find a better, combined, indicator to rank the links according to their vulnerability. The article shows that different indicators assess different links to be vulnerable. Also combined they cannot predict the vulnerability of a link. Therefore, it is concluded that to find vulnerable links, one has to look further than link-based indicators.  相似文献   

5.
This paper presents a new mathematical framework for obtaining quantitative safety measure using macroscopic as well as microscopic traffic data. The safety surrogate obtained from the macroscopic data is in terms of analysis performed on vehicle trajectories obtained from the macroscopic data. This method of obtaining safety measure can be used for many different types of applications. The safety surrogate for the traffic dynamics are developed in terms of a new concept of Negative Speed Differentials (NSD) that involve a convolution of vehicle speed function obtained from vehicle trajectories and then performing the integration of the square of the output for its negative values. The framework is applicable to microscopic traffic dynamics as well where we can use car following models for microscopic dynamics or the LWR model for macroscopic dynamics. This paper then presents the use of this new safety surrogate on the development of a feedback control law for controlling traffic in work zones using Dynamic Message Signs. A hybrid dynamics model is used to represent the switching dynamics due to changing DMS messages. A feedback control design for choosing those messages is presented as well as a simple simulation example to show its application.  相似文献   

6.
Research on using high-resolution event-based data for traffic modeling and control is still at early stage. In this paper, we provide a comprehensive overview on what has been achieved and also think ahead on what can be achieved in the future. It is our opinion that using high-resolution event data, instead of conventional aggregate data, could bring significant improvements to current research and practices in traffic engineering. Event data records the times when a vehicle arrives at and departs from a vehicle detector. From that, individual vehicle’s on-detector-time and time gap between two consecutive vehicles can be derived. Such detailed information is of great importance for traffic modeling and control. As reviewed in this paper, current research has demonstrated that event data are extremely helpful in the fields of detector error diagnosis, vehicle classification, freeway travel time estimation, arterial performance measure, signal control optimization, traffic safety, traffic flow theory, and environmental studies. In addition, the cost of event data collection is low compared to other data collection techniques since event data can be directly collected from existing controller cabinet without any changes on the infrastructure, and can be continuously collected in 24/7 mode. This brings many research opportunities as suggested in the paper.  相似文献   

7.
文章针对因施工误差、运营中的不均匀沉降而导致的现有高速公路部分路段路线不合规范要求的情况,提出了利用机载LIDAR技术,在不干扰交通的情况下获取现有高速公路的三维数据,并通过平纵拟合设计实现对现有高速公路的路线指标评价,以发现高速公路运营过程中的安全隐患,预防交通事故的发生。  相似文献   

8.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed.  相似文献   

9.
频繁发生的客车坠桥事故造成了重大的人员伤亡和财产损失,提高桥梁运营安全水平工作十分迫切。文章在对重庆市桥梁交通安全状况调查的基础上,分析了桥梁路段在设计、管理、交通运行等方面存在的问题,提出从桥头视距、道路养护、警示设施设置、中央分隔带设置等方面进行综合整治的安全改善措施,为桥梁的安全设计与管理提供参考。  相似文献   

10.
This paper examines the characteristics of rail freight traffic cycles from 1950 to 1976. Both the NBER's statistical indicator approach and time series approach are used to identify the leading indicators of rail freight traffic cycles from a set of leading economic indicators published by the Department of Commerce. The concepts and empirical results obtained by these two procedures are compared and contrasted. The interesting findings are: (1) the composite index of 12 leading indicators performs very well as a qualitative and quantitative predictor and (2) the empirical results obtained by the NBER approach are, in general, consistent with those obtained by the time series approach.  相似文献   

11.
In view of the SESAR and NextGEN objectives of increasing both the capacity and the safety of the Air Traffic Management (ATM) system, there is a need to conduct safety risk analysis of current or new operations, covering the joint effect of airborne and ground-based safety nets in ATM. The subject of the research presented in this paper is Airborne Collision Avoidance System (ACAS) which presents an airborne safety net within an ATM context, for current practices as well as advanced concepts. The aim of the research described in this paper is fivefold: (a) to verify existing ACAS models regarding their coverage of evaluation needs of ACAS operations; (b) to develop a stochastic and dynamical model of ACAS II including interactions with pilots and air traffic control; (c) to develop a systematic validation process that allows building model confidence; (d) to initially apply this validation process to the newly-developed ACAS model; and (e) to use the ACAS model to assess the potential collision risk reduction by ACAS II for a historical en-route mid-air collision event. The specific modelling formalism used for this is Stochastically and Dynamically Coloured Petri Nets (SDCPN). The developed SDCPN-based ACAS model contains the technical, human and procedural elements of ACAS operations and fully supports mathematical analysis as well as rare event Monte Carlo simulation of aircraft encounters. In order to build confidence into the developed model and to judge model credibility, a systematic multilevel validation process is defined and is successfully applied. The SDCPN-based ACAS model is demonstrated to work well for a historical en-route mid-air collision event and is very powerful in determining the most critical elements contributing to the non-zero collision risk of ACAS operation.  相似文献   

12.
New technologies in traffic can produce a range of unknown and unplanned deviations which require attention when assessing such technologies for market implementation. Current assessment methods focus on expected and usually desired effects and do not include identification and analyses of all kinds of other effects resulting from processes other than the desired processes. In this paper a method called HAZOP (Hazard and Operability analysis), originally developed for identifying unintended safety problems in chemical processes, is introduced and applied in order to analyse the added value of this method for large scale pilots with intelligent transport systems. The paper discusses the additional potential safety problems which the HAZOP identifies, that should be analysed before implementation of intelligent speed adaptation in daily traffic can be considered.  相似文献   

13.
文章通过选取山区高速公路桥隧结合段行车安全风险影响因素及建立评价递阶层次结构模型,利用层次分析法对各风险影响因素进行了定量化分析,确定了各各风险影响因素的权重,为山区公路桥隧及桥路结合段的行车安全性评价提供参考。  相似文献   

14.
15.
Current modal share in Indian cities is in favor of non-motorized transport (NMT) and public transport (PT), however historical trends shows decline in its use. Existing NMT and PT infrastructure in Indian cities is of poor quality resulting in increasing risk from road traffic crashes to these users. It is therefore likely that the current NMT and PT users will shift to personal motorized vehicles (PMV) as and when they can afford it. Share of NMT and PT users can be retained and possibly increased if safe and convenient facilities for them are created. This shall also have impact on reducing environment impacts of transport system.We have studied travel behavior of three medium size cities – Udaipur, Rajkot and Vishakhapatnam. Later the impact of improving built environment and infrastructure on travel mode shares, fuel consumption, emission levels and traffic safety in Rajkot and Vishakhapatnam are analyzed. For the purpose three scenarios are developed – improving only NMT infrastructure, improving only bus infrastructure and improving both NMT and bus infrastructure.The study shows the strong role of NMT infrastructure in both cities despite geographical dissimilarities. The scenario analysis shows maximum reduction in CO2 emissions is achieved when both PT and NMT infrastructure are improved. Improvement in safety indicator is highest in this scenario. Improving only PT infrastructure may have marginal effect on overall reduction of CO2 emissions and adverse effects on traffic safety. NMT infrastructure is crucial for maintaining the travel mode shares in favor of PT and NMT in future.  相似文献   

16.
Two-dimensional multi-objective optimizations have been used for decades for the problems in traffic engineering although only few times so far in the optimization of signal timings. While the other engineering and science disciplines have utilized visualization of 3-dimensional Pareto fronts in the optimization studies, we have not seen many of those concepts applied to traffic signal optimization problems. To bridge the gap in the existing knowledge this study presents a methodology where 3-dimensional Pareto Fronts of signal timings, which are expressed through mobility, (surrogate) safety, and environmental factors, are optimized by use of an evolutionary algorithm. The study uses a segment of 5 signalized intersections in West Valley City, Utah, to test signal timings which provide a balance between mobility, safety and environment. In addition, a set of previous developed signal timing scenarios, including some of the Connected Vehicle technologies such as GLOSA, were conducted to evaluate the quality of the 3-dimensional Pareto front solutions. The results show success of 3-dimensinal Pareto fronts moving towards optimality. The resulting signal timing plans do not show large differences between themselves but all improve on the signal timings from the field, significantly. The commonly used optimization of standard single-objective functions shows robust solutions. The new set of Connected Vehicle technologies also shows promising benefits, especially in the area of reducing inter-vehicular friction. The resulting timing plans from two optimization sets (constrained and unconstrained) show that environmental and safe signal timings coincide but somewhat contradict mobility. Further research is needed to apply similar concepts on a variety of networks and traffic conditions before generalizing findings.  相似文献   

17.
Travel time reliability is considered to be one of the key indicators for the performance of transport systems and is measured in various ways. This paper synthesizes both reliability concepts: traffic breakdown, the indicator of the instability of travel times, is treated as the risk, whereas travel time variability, the indicator of the uncertainty of travel times, is considered as the consequence of this risk. An analytical formula, using risk assessment technique, explicitly expresses the cost of travel time unreliability as the sum of the products of the consequences (i.e. variability) and the corresponding probabilities of breakdown. It provides a novel measure of travel time reliability and is applicable in network performance evaluations. An empirical example based on a large dataset of freeway traffic flow data from loop detectors shows that the developed travel time reliability measure is both intuitively logical and consistent.  相似文献   

18.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority).  相似文献   

19.
Wang  Baojin  Hensher  David A.  Ton  Tu 《Transportation》2002,29(3):253-270
The existing literature on road safety suggests that a driver's perception of safety is an important influence on their driving behaviour. A challenging research question is how to measure the perception of safety given the complex interactions among drivers, vehicles and the road setting. In this paper, we investigate a sample of driver evaluations of the perception of safety associated with a set of typical road environments. A roundabout was selected as the context for the empirical study. Data was obtained by a computerised survey using the video-captured road and traffic situations. A controlled experiment elicited driver responses when faced with a mixture of attributes that describe the roundabout environment. An ordered probit model identified the contribution of each attribute to the overall determination of the perception of safety. An indicator of perceived safety was developed for a number of typical road and traffic situations and for different driver segments.  相似文献   

20.
A wide array of spatial units has been explored in macro-level modeling. With the advancement of Geographic Information System (GIS) analysts are able to analyze crashes for various geographical units. However, a clear guideline on which geographic entity should be chosen is not present. Macro level safety analysis is at the core of transportation safety planning (TSP) which in turn is a key in many aspects of policy and decision making of safety investments. The preference of spatial unit can vary with the dependent variable of the model. Or, for a specific dependent variable, models may be invariant to multiple spatial units by producing a similar goodness-of-fits. In this study three different crash models were investigated for traffic analysis zones (TAZs), block groups (BGs) and census tracts (CTs) of two counties in Florida. The models were developed for the total crashes, severe crashes and pedestrian crashes in this region. The primary objective of the study was to explore and investigate the effect of zonal variation (scale and zoning) on these specific types of crash models. These models were developed based on various roadway characteristics and census variables (e.g., land use, socio-economic, etc.).It was found that the significance of explanatory variables is not consistent among models based on different zoning systems. Although the difference in variable significance across geographic units was found, the results also show that the sign of the coefficients are reasonable and explainable in all models.Key findings of this study are, first, signs of coefficients are consistent if these variables are significant in models with same response variables, even if geographic units are different. Second, the number of significant variables is affected by response variables and also geographic units.Admittedly, TAZs are now the only traffic related zone system, thus TAZs are being widely used by transportation planners and frequently utilized in research related to macroscopic crash analysis. Nevertheless, considering that TAZs are not delineated for traffic crash analysis but they were designed for the long range transportation plans, TAZs might not be the optimal zone system for traffic crash modeling at the macroscopic level. Therefore, it recommended that other zone systems be explored for crash analysis as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号