首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭际 《船舶工程》2017,39(S1):32-36
针对内河船舶船体梁极限弯曲能力的计算与统计特性问题,将影响船体梁极限弯曲能力的主要因素作为随机变量,分别讨论了材料屈服强度与板厚的概率分布参数选取。采用增量迭代方法与改进Rosenblueth方法,计算得到船体梁极限弯曲能力及其分布参数。研究表明,极限弯曲能力计算时可不考虑板厚变异的影响,内河船舶船体梁极限弯曲能力具有统计上的稳定性。  相似文献   

2.
内河船舶极限强度计算的逐步破坏法程序设计   总被引:1,自引:0,他引:1  
在船舶设计与强度评估中,为更加真实地了解船体结构的安全极限,要求计算船体梁的极限强度。逐步破坏法由于其计算效率高,结果比较可靠,被广泛运用于大型海船设计,但在内河船舶设计规范中,至今尚无有关极限强度的条款。通过非线性有限元程序计算得到加筋板单元平均应力应变关系,并与Rahman法、CSR法以及ISUM方法计算得到的应力应变关系曲线进行对比,以验证其可靠性。然后,按照一定的规律建立符合内河船舶构造的加筋板单元应力应变关系数据库,并编写逐步破坏法计算程序,在计算过程中,其能根据加筋板单元尺寸自动选取对应的关系曲线;对参数超出数据库的情况,则通过插值实现。  相似文献   

3.
船体梁的总纵强度是反映船舶结构安全可靠的最基本的强度指标。船体结构极限强度评估对于船舶结构初步设计、使用、维护和维修都非常重要,因此船体梁极限强度研究成为近几十年来船舶工程界的热点研究课题之一。到目前为止有两种典型的加筋板和船体梁的极限强度分析方法,它们是直接计算法和逐步破坏分析法。本文基于加筋板单元的平均应力应变曲线和逐步破坏分拆方法,提出了加筋板和船体梁极限强度的简化分析方法,考虑了初始挠度和残余应力对加筋板单元极限强度的影响。数值结果表明,采用本文简化方法得到的结果与有限元计算结果或其它逐步破坏分析结果比较符合。  相似文献   

4.
船体结构极限强度研究综述   总被引:3,自引:3,他引:0  
综述船舶极限强度研究现状,包括平板及加筋板及船体梁极限强度的计算分析方法,以及平板和加筋板、船体梁和实船极限强度试验研究。  相似文献   

5.
船体结构极限强度的影响参数与敏感度探讨   总被引:8,自引:2,他引:6  
白勇  徐向东 《船舶力学》1998,2(5):35-43
本文采用非线性有限元方法计算了船体结构在两种失效模式下的极限强度:一是加筋板格的非一性失稳极限强度;二是船体在中拱及中垂弯曲下的总纵屈服极限强度。较全面 探讨了计算中各种因素对第一种极限强度的影响,并对这两种极限强度中的主要影响参数,包括屈服应力、杨氏模量、初始缺陷、焊接残余应力、板厚等变化的敏感度作了计算,为船体结构的可靠性分析与设计提供了科学依据。  相似文献   

6.
船体梁约束扭转极限承载力计算由于问题复杂至今未有理论解,只能用非线性有限元方法计算,效率很低。论文通过对25块实船板格的非线性有限元分析,引入板的柔度系数,构建了加筋板格的剪切应力与应变关系,提出了船体梁约束扭转的变形和应力假设,构造了船体梁约束扭转的简化逐步迭代计算方法,编制了相应的计算程序。实船算例表明,所提出的剪应力与应变关系和约束扭转极限承载能力的计算方法与非线性有限元方法相比,具有较高的精度和效率,可应用于船舶与海洋平台结构以及各类薄壁梁约束扭转极限强度的计算。  相似文献   

7.
在船舶纵弯曲强度的可靠性分析中,需要计算船体梁的抗弯能力,本文提供一种实用计算方法。在此方法中取材料厚度(或剖面积)和屈服限、弹性模量等均为随机变量,利用随机函数的线性化原理,求得船体断面几何要素以及抗弯能力的统计特征值。文中还介绍了国产船用钢材的厚度和屈服极限的变异系数,并利用组合梁模型试验资料对采用梁模型带来的计算误差及其修正办法作了讨论。该计算方法采用了造船人员熟悉的常规强度计算中的格式,便于在船舶设计中应用。  相似文献   

8.
散货船在装载矿石等重货时,通常只装载在奇数货舱内,这就是所谓的隔舱重载工况。在这种工况下,中间舱的双层底结构除受到总纵弯曲作用外,还会受到邻舱重货引起的局部弯曲作用,而且该局部弯曲的作用会降低中拱状态下船体梁的极限强度。文章提出了一种简易计算方法,顶边舱结构和底边舱结构可以看作两根梁,双层底结构可视作正交异性板,运用双梁理论和正交异性板理论可推导出局部弯曲的影响。然后,考虑该局部弯曲的作用,用Smith法计算船体梁的极限强度。最后,将文中方法计算的结果与FEM结果进行比较,并对结果进行了分析。  相似文献   

9.
利用传统分析方法对船体梁弯曲承载力的极限状态进行分析,存在着分析准确率低,效率低的问题。针对上述问题,提出一种极限状态的仿真分析方法。首先从船体梁结构单元和材料属性构建船体梁极限状态仿真模型,在此基础上计算船体梁弯曲承载力的极限强度,得出分析结果。实验结果表明:与传统的极限状态分析方法相比,利用仿真分析方法对船体梁弯曲承载力的极限状态进行分析,平均误差值低22.1。  相似文献   

10.
依据《内河船舶检验技术规则》要求,老旧船舶在换证检验中要对船体外板进行测厚以确认船舶外板的损耗是在规则要求之内,下文就柳州航区老旧船舶船体外板损耗和测厚常见问题进行分析。  相似文献   

11.
针对现有船体梁极限承载能力计算的Smith法不能计及侧向载荷作用的问题,本文提出了一种考虑侧向载荷作用下板架变形的纵骨梁柱失稳的屈曲载荷计算模型和方法,推导了计及侧向压力对板架影响的纵骨梁柱屈曲载荷-端缩曲线公式。进行了纵向与侧向载荷共同作用下三个板架的极限承载力计算,分析讨论了侧向载荷、板架参数等对纵骨梁柱屈曲极限强度的影响规律。应用本文方法编制了考虑侧向荷载作用的船体梁极限强度程序,进行了实船的计算和对比分析。  相似文献   

12.
讨论船体薄壁梁剖面特性计算的4种主要方式,并以一个“标准”的船体剖面对采用各种计算方式得到的剖面特性参数的结果进行比较和分析,说明在大开口船舶弯扭组合强度计算分析中,采用等效板厚的方式引起的误差不大。  相似文献   

13.
船体结构极限强度研究进展   总被引:1,自引:0,他引:1  
谭开忍  李小平 《船舶》2006,(5):19-25
综述了船体结构极限强度的研究现状,分析了加筋板、船体板架和船体梁极限强度的计算方法以及船体结构极限强度的试验研究。  相似文献   

14.
破损船体非对称弯曲极限强度分析及可靠性评估   总被引:10,自引:0,他引:10  
在船体发生破损后,其剩余有效剖面是非对称的,船体还可能倾斜。本文首先对破损船体非对称弯曲进行了弹性和塑性分析,在此基础上假设了破损船体发生整体破坏时的剖面应力分布,给出了破损船体非对称弯曲极限强度分析方法,并采用了比较精细的方法计算加筋板格的屈曲极限强度。以箱型梁模型和超大型油船为例,将本文的计算结果与试验、ISUM法及解析公式的结果进行了比较。基于破损船体极限强度,结合重要性样本法,对65,00  相似文献   

15.
三种船型结构的极限强度分析比较   总被引:1,自引:0,他引:1  
理想化结构单元法(ISUM)是一种对大型结构物进行非线性分析的有效数值方法。本文采用Paik基于ISUM开发的用于解决大型结构极限强度问题的计算程序ALPS/ISUM,对油船、散货船和集装箱船进行了一系列的极限强度分析。从分析结果可知,这三种船舶的两个基本参数船长和载重量与极限强度值有着比较密切的关系。极限强度值随着这两个参数值的增加而增加。而且船长相同时,油船的极限强度最大,集装箱船的极限强度最小。对于大中型船舶,载重量与极限强度基本保持线性关系。油船和散货船极限强度的增长趋势基本相同。而集装箱船增长趋势明显大于油船和散货船。本文还计算了主要影响参数如屈服应力、杨氏模量、初始变形、焊接残余应力以及平均板厚等的变化对极限强度的影响,探讨了这三种船舶的总纵弯曲极限强度对这些参数的灵敏度,为船体结构的设计根供科举依据。  相似文献   

16.
极限强度表征船体结构的极限承载能力,是船舶强度校核的主要内容。船体结构在拉压载荷下的极限强度多年来已被广泛研究并取得重大进展。随着船舶大型化及开口部位的增多,扭转载荷成为船体结构剪切极限强度计算不可忽视的重要组成部分。由于剪切载荷的特殊性,国内外目前尚未开展船体结构的剪切实验。因此,应用数值模拟方法计算剪切极限强度十分必要。通过对比分析研究船体结构主要是船体板在不同情况下的力学性能,探讨不同结构对船体板剪切极限强度的影响程度。结果表明,剪切极限强度对船体板的几何尺寸具有较强的敏感度,随着几何尺寸下降,极限强度急剧降低。  相似文献   

17.
[目的]船舶在航行过程中船底板等船体结构除了受到纵向弯曲应力以及舷侧外板传递的横向水压力载荷影响外,还因焊接及应力集中容易产生裂纹,使船体结构的承载能力降低。为此,[方法]通过数值计算,研究双向受压载荷作用下含中心裂纹船体板的剩余极限强度。首先,提出计算含裂纹船体板剩余极限强度的参数化函数模型;然后,计算和分析影响其强度的因素,如裂纹长度、倾角和船体板细长比、长宽比以及横纵载荷比,并提出倾斜裂纹的有效投影长度参数;最后,基于计算结果,拟合得到双向受压载荷作用下含中心裂纹船体板的剩余极限强度计算公式。[结果]结果表明,运用计算公式得到的结果具有较高的精度,[结论]可用于对实船上含中心裂纹船底板纵向极限承载能力的计算分析。  相似文献   

18.
[目的]船舶在航行过程中船底板等船体结构除了受到纵向弯曲应力以及舷侧外板传递的横向水压力载荷影响外,还因焊接及应力集中容易产生裂纹,使船体结构的承载能力降低。为此,[方法]通过数值计算,研究双向受压载荷作用下含中心裂纹船体板的剩余极限强度。首先,提出计算含裂纹船体板剩余极限强度的参数化函数模型;然后,计算和分析影响其强度的因素,如裂纹长度、倾角和船体板细长比、长宽比以及横纵载荷比,并提出倾斜裂纹的有效投影长度参数;最后,基于计算结果,拟合得到双向受压载荷作用下含中心裂纹船体板的剩余极限强度计算公式。[结果]结果表明,运用计算公式得到的结果具有较高的精度,[结论]可用于对实船上含中心裂纹船底板纵向极限承载能力的计算分析。  相似文献   

19.
本文针对船舶在中垂中拱等危险时刻,船体板遭受较大的弯曲塑性时,船体板三维表面裂纹的深度方向裂尖CTOD与船体板的最外层纤维等效塑性应变的关系进行研究。并采用有限元分析方法探讨了在纯弯曲状态下裂纹形状因子、裂纹深度和板厚等不同影响因素对裂尖处CTOD的影响,并基于有限元模拟的数据,提出了船体板表面裂纹在弯曲状态下基于应变关系的CTOD估算公式。  相似文献   

20.
船体梁弯曲极限强度分析   总被引:1,自引:0,他引:1  
针对船体梁极限强度计算问题,研究基于弯曲承载力的极限状态分析技术。分析总结船体梁极限强度分析方法及研究现状,阐述简化逐步破坏法(Smith逐步破坏法)的技术流程,探讨基于非线性有限元极限强度分析技术中各参数设置对计算结果的影响。在简化逐步破坏法计算结果的基础上,利用非线性有限元法评估基于单跨模型和舱段模型的船体梁极限强度,并探究上层建筑对极限承载力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号