首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 2000s, there have been three forces provoking slow steaming practice in the liner industry: (1) oversupply of shipping capacity, (2) increase of bunker price and (3) environmental pressure. This paper analyses the background and the recent application of slow steaming in liner shipping. The research looks into the questions of how slow steaming can save bunker consumption and bring benefits to the environment. On the other hand, solutions are also examined to the adverse side of slow steaming practice, i.e., how it affects the container transit time. For which, a cost model is developed to demonstrate the impact of slow steaming on the revenue change, with application to the North Europe—Far East Trade as a case study. The final result shows that the optimal speed for the shipowner is correlated with the designed speed, bunker price and the price of CO2. With the increase of the bunker price and the price of CO2, the optimal speed will also increase, which means that slow steaming practice has a positive impact on the environmental protection.  相似文献   

2.
International shipping is a significant contributor to global greenhouse gas (GHG) emissions, and is under mounting pressure to contribute to overall GHG emission reductions. There is an ongoing debate regarding how much the sector could be expected to reduce emissions and how the reduction could be achieved. This paper details a methodology for assessing the cost-effectiveness of technical and operational measures for reducing CO2 emissions from shipping, through the development of an evaluation parameter called the Cost of Averting a Tonne of CO2-eq Heating, CATCH, and decision criterion, against which the evaluation parameter should be evaluated. The methodology is in line with the Intergovernmental Panel on Climate Change (IPCC) and with regulatory work on safety and environmental protection issues at the International Maritime Organization (IMO).

The results of this study suggest that CATCH <50 $/tonne of CO2-eq should be used as a decision criterion for investment in emission reduction measures for shipping. In total, 13 specific measures for reducing CO2 emissions have been analysed for two selected case ships to illustrate the methodology. Results from this work shows that several measures are cost effective according to the proposed criterion. The results suggest that cost effective reductions for the fleet may well be in the order of 30% for technical measures, and above 50% when including speed reductions. The results of this study show that the cost effectiveness approach for the regulation of shipping emissions is viable and should be pursued in the ongoing regulatory process.  相似文献   

3.
4.
Increasing the number of vessels in a container liner service while reducing speeds, known as slow steaming strategy, has been a short-term response since 2008 to the challenges of over-capacity and the rise in bunker prices faced by shipping lines. This strategy, which reduces the fuel cost per voyage but increases the operating costs as more vessels are added to the service, is difficult to sustain when the transit time significantly affects the transportation demand. This article proposes a model applied to this situation, referred to as a case of optimal speed under semi-elastic demand, for which containerised perishable product transport is sensitive to time, while frozen and dry products are not. It investigates if slow steaming is still optimal when working to maximise the total profit on the cycle. In order to demonstrate the proposed model, a numerical application is carried out for a direct Northern Europe to East Coast of South America container service, a route selected due to the high volume of fresh products. For this application, the speed that maximises the total profit with inelastic and semi-elastic demand is then estimated for several bunker fuel prices.  相似文献   

5.
Recently, shipping lines have focused on efficient ship operation, which relates to energy efficiency issues in shipping and, particularly, to operational issues such that the minimisation of fuel consumption and resulting greenhouse gas emissions. Efficient ship operation in container lines is closely related to the ship’s time at sea and ship’s time in port. Reduction in port time, thanks to high-quality port operations, allows improvement in the operational efficiency of a liner service by reducing the fuel consumption of a ship at sea and its resulting CO2 emissions. The main goal of this article is to investigate how time in port affects efficient ship operation in terms of operating costs, CO2 emissions and externalities. For this, as a methodology, a simulation based upon system dynamics is introduced. Major finding is that less time in port resulting from the improvement of port operations contributes to efficient ship operation in terms of operating costs, amount of CO2 emissions and external effects in the liner shipping industry. In particular, a sensitivity analysis on efficient ship operation vis-à-vis the quality of port operation shows that bigger ships need to select highly productive calling ports that provide less time in port.  相似文献   

6.
International shipping is a significant contributor to Global Greenhouse Gas (GHG) emissions, responsible for approximately 3% of global CO2 emissions. The International Maritime Organization is currently working to establish GHG regulations for international shipping and a cost effectiveness approach has been suggested to determine the required emission reductions from shipping. To achieve emission reductions in a cost effective manner, this study has assessed the cost and reduction potential for present and future abatement measures based on new and unpublished data. The model used captures the world fleet up to 2030, and the analysis includes 25 separate measures. A new integrated modelling approach has been used combining fleet projections with activity-based CO2 emission modelling and projected development of measures for CO2 emission reduction. The world fleet projections up to 2030 are constructed using a fleet growth model that takes into account assumed ship type specific scrapping and new building rates. A baseline trajectory for CO2 emission is then established. The reduction potential from the baseline trajectory and the associated marginal cost levels are calculated for 25 different emission reduction measures. The results are given as marginal abatement cost curves, and as future cost scenarios for reduction of world fleet CO2 emissions. The results show that a scenario in which CO2 emissions are reduced by 33% from baseline in 2030 is achievable at a marginal cost of USD 0 per tonne reduced. At this cost level, emission in 2010 can be reduced by 19% and by 24% in 2020. A scenario with 49% reduction from baseline in 2030 can be achieved at a marginal cost of USD 100 per tonne (27% in 2010 and 35% in 2020). Furthermore, it is evident that further increasing the cost level beyond USD 100 per tonne yield very little in terms of further emission reduction. The results also indicate that stabilising fleet emissions at current levels is obtainable at moderate costs, compensating for fleet growth up to 2030. However, significant reductions beyond current levels seem difficult to achieve. Marginal abatement costs for the major ship types are also calculated, and the results are shown to be relatively homogenous for all major ship types. The presented data and methodology could be very useful for assisting the industry and policymakers in selecting cost effective solutions for reducing GHG emissions from the world fleet.  相似文献   

7.
ABSTRACT

A considerable amount of energy is consumed with every completed ship voyage and each port operation performed. Recent regulative approaches by the IMO are to enforce the shipping industry to become more energy efficient and sustainable. There is a growing amount of literature on the energy efficiency management of ships and ports. However, there is still inadequate research effort on the ship–port interface in order to obtain an Integrated Energy Efficiency framework for marine transport operations. In this research, a theoretical concept is generated to measure holistic energy efficiency in shipping operations. The main purpose of this paper is to identify nodes of the integrated ship-port energy efficiency framework and develop a probabilistic approach, which can help to increase energy efficiency and reduce CO2 emissions for shipping companies. This research generates an application of BBNs on ship–port interface regarding the integrated operational energy efficiency interactions by aiming to optimise holistic operational energy efficiency and CO2 emissions. The outcomes suggest that it would be possible to increase the probability of a more energy efficient and sustainable marine transport operation by integrating the influences of port and ship operation performances and their elements on the related route planning and slow steaming decision-making.  相似文献   

8.
The Belt and Road initiative is a novel exploration of China towards strategic collaboration with Eurasia countries to an extent of a larger scale with higher and deeper level of cooperation. To meet the growing global demand of transportation, increasing numbers of liner shipping companies collaborate and form alliances to share vessel capacity and reduce capital costs. Effective liner shipping vessel sharing is essential for the Belt and Road initiative in terms of building efficient maritime transport networks. In promoting environmental development, shipping companies are required to attain higher environmental standards. However, limited literature relates vessel sharing to environmental performance. This paper studies the impacts of liner vessel sharing from the economic and environmental perspectives. Two container allocation models are developed for the two scenarios: with and without vessel sharing. The carbon emissions in transportation are calculated under both scenarios. Numerical studies are carried out using services along the China-Indochina Peninsula Economic (CIPE) Corridor. Liner shipping companies could benefit from vessel sharing in terms of significant profit improvement. Vessel sharing could also benefit the environment by reducing the CO2 emissions dramatically.  相似文献   

9.
Emissions from commercial shipping are currently the subject of intense scrutiny. Among the top fuel-consuming categories of ships and hence air polluters are container vessels. The main reason is their high service speed. Lately, speed reduction has become a very popular operational measure to reduce fuel consumption and can obviously be used to curb emissions. This paper examines such an operational scenario. Since time at sea increases with slow steaming, there is a parallel and strong interest to investigate possible ways to decrease time in port. One way to do so is to reduce port service time. Another possible way to minimize disruption and maximize efficiency is the prompt berthing of vessels upon arrival. To that effect, a related berthing policy is investigated as a measure to reduce waiting time. The objective of reducing emissions along the maritime intermodal container chain is investigated vis-à-vis reduction in operational costs and other service attributes. Some illustrative examples are presented.  相似文献   

10.
张刚 《船舶工程》2017,39(5):60-65
以大型万箱级集装箱船为研究对象,从船舶蒸汽系统设计的角度出发,结合船舶在降速及燃烧高粘度燃油航行状态下蒸汽耗量的分析,废气锅炉蒸汽产量分析,计算出主机废气排量及温度、锅炉产汽量及船舶设备的耗汽量,最终得出辅锅炉不启动运行前提下的船舶主机最低运行功率,以达到船舶最大节能降耗的效果,对航运企业船队综合节能增效策略最佳实践具有参考价值。  相似文献   

11.
The International Maritime Organisation is currently working on establishing regulations for international shipping regarding greenhouse gas emissions, and a cost-effectiveness approach has been suggested as one method for determining the necessary reductions in emissions from shipping. Previous studies have investigated the CO2 emission reduction potential for the world shipping fleet up to 2030 and the associated marginal abatement cost levels. To analyse the cost implications of different emission reduction scenarios, this study has calculated the emission reduction potential and additional capital expenditure for 25 CO2 emission reduction measures applied to 59 ship segments. The expected fleet development over time, keeping track of new ships built from 2010 to 2030 and Existing ships built prior to 2010 and still in operation by 2030, have been modelled. Two alternative approaches to find the cost-effective potential in the world shipping fleet have been applied. One approach is to implement only measures which in themselves are cost-effective (measure-by-measure), and another approach is to implement measures as long as the net savings from cost-effective measures balance the costs of non-cost-effective measures (set of measures). The results demonstrate that by 2030, the majority (93%) of the reduction potential will be related to new ships. Our results show that the measure-by-measure approach would decrease the CO2 emissions by 30% for new ships while the set-of-measures approach with 53% (of the 2030 baseline emissions of 1316?Mt). The implication of achieving such emission reduction is an increase in the capital expenditure on New ships by 6% (USD 183 billion) and 27% (USD 761 billion), respectively, in the period 2010 to 2030 compared to a business-as-usual scenario. The measure-by-measure approach yields a 5% decrease in CO2 emission per 1% increase in capital expenditure, while the set-of-measures approach yields a 2% decrease per 1% increase. This is due to the significant variation in capital intensity of the different measures, ranging from almost zero to USD 200 per tonne of CO2 averted. The results of this study are useful for the shipping industry to assess the economic burden that must be shouldered in order to implement abatement measures under different CO2 emission reduction scenarios.  相似文献   

12.
One of the most urgent environmental problems facing the shipping industry today is the reduction of Greenhouse Gas (GHG) emissions from its operations and the possible cost-effective ways in which this reduction could be accomplished. Various technical and operational measures have been proposed as well as market-based instruments for the achievement of the compliance of marine industry with these measures. This paper investigates the levels of environmental awareness of the Greek shipping companies and their views and practices on the proposed policies for the reduction of GHG emissions from their ships. A survey was carried out using a questionnaire distributed to Greek shipping companies of different sizes, involved in different segments of the marine industry, so that the survey's results not only represent a large part of the Greek shipping industry but also reveal the different environmental attitudes and practices on maritime GHG emissions among the shipping companies. Given the size and the importance of the Greek shipping industry in the international maritime field, this paper's results present a special significance as they could be further analyzed and taken into account for the achievement of the compliance of marine industry with any future policy instrument for the reduction of maritime GHG emissions.  相似文献   

13.
基于国际海事组织(IMO)限制温室气体排放(GHG)条约,阐述了船舶能效设计指数(EEDI)的概念,其计算公式中各项参数的含义及降低EEDI值的途径,重点指出EEDI的出现对我国造船业带来的影响及挑战。船舶采用经济航速是最为有效的节能减排的方式,但对营运商不是最佳选择,故而研发低碳燃油等优化技术成为当下最为重要的任务。船舶能效设计指数的强制实施在短期内对我国造船业造成了一定的冲击,但是长远看会进一步推进我国造船业进行深入的技术改造,从而提高中国船舶企业的综合竞争实力。  相似文献   

14.
According to the Third Greenhouse Gas (GHG) Study 2014 of International Maritime Organization (IMO), the total emission in 2012 are estimated to be 949 million tonnes which is 2.7% of global CO2 emission by total shipping and expected to increase from 2012 levels by 50–250% by 2050. Significant changes are needed to all industry by implementation of energy efficiency design and operational measures to meet existing and future global emission reduction targets. Although the fuel cost-reducing effects of some energy efficiency measures and new technologies are well established and matured, shipping companies appear reluctant to adopt them. Besides, it is observed that the stakeholders are directly or indirectly involved for implementation of energy efficiency measures in shipping industry. Therefore, the objective for this study was to identify the barriers to energy efficiency operational measures by a qualitative survey among various stakeholders from all corners of shipping industry. It has been found in the research that the barriers for implementation of all cost-free operational measures are almost the same such as lack of information of the measure, lack of awareness and competence of ship crews and operation difficulties which are in nature of information and technical barriers. But financial issue and owner’s interest are the key barriers for some other operational measures which are related to costing and need investment for implementation.  相似文献   

15.
Since its advent, the liner shipping industry has been characterized by fierce competition and cooperation amongst the member carriers. In recent years, almost all the liners have sought extensive cooperation with others, as reflected mainly by the formation of strategic shipping alliances. Despite this, there are still some liners who prefer the ‘go-it-alone’ policy and have achieved relative success. It seems that cooperation is not always necessary for a liner company's success. It follows that a study that aims to find the rationale behind liner cooperation (or non-cooperation) is of great significance. Over many years of development, game theory has proved to be a useful tool in the study of economics. It is analytically applicable in this market. With these arguments in mind, this paper aims to apply cooperative game theory to analyse co-operation among members of liner shipping strategic alliances. This will involve: (i) presenting a detailed and systematic analysis of liner shipping strategic alliances: (ii) a concise overview of the development of game theory with specific focus on cooperative game theory, and (iii) deducing a conceptual framework through the application of cooperative game theory to liner shipping strategic alliances. The accomplishment of the aforementioned objectives will enhance understanding of inter-organizational relationships and decision-making behaviour in the liner shipping sector.  相似文献   

16.
Since its advent, the liner shipping industry has been characterized by fierce competition and cooperation amongst the member carriers. In recent years, almost all the liners have sought extensive cooperation with others, as reflected mainly by the formation of strategic shipping alliances. Despite this, there are still some liners who prefer the 'go-it-alone' policy and have achieved relative success. It seems that cooperation is not always necessary for a liner company's success. It follows that a study that aims to find the rationale behind liner cooperation (or non-cooperation) is of great significance. Over many years of development, game theory has proved to be a useful tool in the study of economics. It is analytically applicable in this market. With these arguments in mind, this paper aims to apply cooperative game theory to analyse co-operation among members of liner shipping strategic alliances. This will involve: (i) presenting a detailed and systematic analysis of liner shipping strategic alliances: (ii) a concise overview of the development of game theory with specific focus on cooperative game theory, and (iii) deducing a conceptual framework through the application of cooperative game theory to liner shipping strategic alliances. The accomplishment of the aforementioned objectives will enhance understanding of inter-organizational relationships and decision-making behaviour in the liner shipping sector.  相似文献   

17.
Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.  相似文献   

18.
由于全球航运需求未来将持续处于低增长态势,而燃油成本又是船东最为关注的运营成本之一,节能减排逐渐成为应对国际海事组织相关规则和实现绿色航运的重要手段.结合航运企业现实案例,探讨了节能减排着力点由传统技术应用型向综合技术服务型转化的可行性.  相似文献   

19.
Shipping is increasing today along with the sector's emissions of greenhouse gases. The awareness of the emissions has increased the pressure for regulations of the shipping industry. Regulating the sector is far from simple due to the complexity of the market and the evasive characteristics of the industry. We know from studies of road pricing that attitudes among stakeholders are important for a successive policy implementation. The objective of this paper is to capture the Swedish ports’ attitudes towards regulations of the shipping sector's emissions of CO2 . This has been done by conducting a survey among commercial ports in Sweden. To our knowledge, this is the first study of this kind. Our analysis indicates that ports in Sweden are generally positive towards an implementation of regulations to reduce carbon dioxide (CO2) emissions from the shipping industry. The ports where most positive towards CO2 differentiated port due (97%), followed by a technical standard (92%), CO2 taxation (84%) and EU ETS (The European Union Emissions Trading Scheme; 74%).  相似文献   

20.
为应对IMO提出的日益严格的排放法规,降低船舶EEOI值,本文分析了EEOI的数学计算公式以及简化公式,并以某8063TEU大型集装箱船为目标船,基于MATLAB/Simulink建立了船舶能效系统的仿真模型.通过仿真研究,分析了船舶航速、航期、载货量、航程对船舶EEOI的影响,同时研究分析了EEOI对航速、载货量、航程变化的敏感性.结果表明随着航期的增加船舶EEOI逐渐减小;EEOI对航速的敏感性最高,对载货量的敏感性其次,而对航程的敏感性较低;降低主机工作负荷从而降低航速,以及提高船舶载货量都能有效降低船舶EEOI值,而增加航程则对降低EEOI值效果不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号