首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:由于不同的刚度分布,波形钢腹板预应力混凝土箱梁截面剪力滞效应与普通预应力混凝土箱梁截面存在较大差异,为研究单箱双室波形钢腹板预应力混凝土箱梁的剪力滞效应,借助有限元分析软件ANSYS建立单箱双室波形钢腹板预应力混凝土箱梁空间模型,分析两种典型荷载工况下典型截面的应力分布,得到典型截面的剪力滞系数,并与普通预应力混凝土箱形梁作比较,分析讨论7种几何参数变化条件下箱梁剪力滞系数的变化情况。研究结论:(1)采用波形钢腹板略增大了各断面的最大剪力滞系数;(2)对于顶板而言,中腹板的剪力滞系数大于边腹板,底板反之;(3)剪力滞系数的主要影响参数是宽跨比、承托长度、顶板厚度,横隔板数量对剪力滞系数的影响甚小;(4)该研究成果对波形钢腹板预应力混凝土箱梁设计及计算分析具有参考借鉴价值。  相似文献   

2.
考虑混凝土顶板和钢底板不同的模量,结合变分法推导波形钢腹板-钢底板-混凝土顶板(简称CSWSB)组合箱梁剪力滞效应的控制微分方程组和边界条件,建立CSWSB简支组合箱梁跨中集中荷载、均布荷载作用下剪力滞系数和有效分布宽度的计算公式,采用模型试验梁对2种荷载工况下单箱单室组合箱梁的剪力滞效应和有效分布宽度进行分析。研究结果表明:简支组合箱梁在集中荷载和均布荷载作用下剪力滞系数表达式正确,集中荷载作用下的剪力滞效应比均布荷载作用下的剪力滞效应明显,上翼缘板的剪力滞效应比下翼缘板的剪力滞效应明显;根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》计算CSWSB组合箱梁翼板有效分布宽度时,与理论计算局部差值达到了10%,富余量较小;与《钢-混凝土组合桥梁设计规范》计算CSWSB组合箱梁翼板有效分布宽度对比,整体差值率偏大,设计中应给予重视。  相似文献   

3.
研究目的:多室箱梁在竖向弯曲变形时,对应于初等梁理论纵向应力计算模式,存在多种横向剪力滞效应模式。本文在分析单箱双室箱梁剪力滞效应的基本模式和力学机理的基础上,结合铁路单箱双室简支箱梁算例,研究在跨中集中力和满跨均布荷载下,不同剪力滞效应模式的分布规律。以对剪力滞效应影响较为突出的高跨比为变量,研究高跨比变化对各剪力滞模式的影响规律。研究结论:通过对双室箱梁的剪力滞效应分析,得出:(1)以双室箱梁为代表的多室箱梁,对应于同一纵向对称荷载,存在着多种剪力滞效应模式,且不同模式的剪力滞效应差异较大;(2)在单箱双室箱梁的多种剪力滞效应模式中,集中力仅作用于中腹板时,截面的剪力滞效应最为突出,同时剪力滞效应对高跨比的改变最为敏感;(3)考虑到多室箱梁剪力滞效应的多模式性,在进行多室箱梁设计时,应充分考虑不同荷载作用模式对剪力滞效应的影响;(4)本文研究方法和结论可为多室箱梁桥的设计和力学分析提供理论借鉴。  相似文献   

4.
基于比拟杆法,推导单箱三室箱梁的比拟杆面积计算公式和剪力滞效应计算的控制微分方程。针对算例,分别采用本文理论、有机玻璃模型试验和有限元法分析简支箱梁和连续箱梁在集中力和均布荷载作用下的剪力滞效应。研究结果表明:本文理论解与有机玻璃模型试验解和板壳有限元解吻合良好。对简支箱梁,中腹板部位的顶和底板正应力均大于边腹板处顶和底板正应力。对连续箱梁,跨中截面中腹板处的顶和底板正应力均大于边腹板处和底顶板正应力。但对满跨均布荷载下的支座截面,底板正应力在边腹板部位大于中腹板部位,应力相差最大约12.91%。在单箱三室箱梁设计中考虑各腹板部位顶和底板正应力的差异,并以此确定有效翼缘分析宽度是非常必要的。  相似文献   

5.
为开展单箱双室箱梁剪力滞效应的试验研究,制作了有机玻璃简支箱梁模型。在容许开裂范围内,对该试验箱梁进行集中力作用于跨中截面三腹板上方、两对称边腹板上方和中腹板上方的加载。采用DH3816应变采集仪测得跨中及1/4跨截面各关键点应变值,并用百分表测得箱梁各关键截面挠度值。测量得到的截面应力分布规律验证了箱梁截面剪力滞效应的存在。同时对该有机玻璃简支箱梁,采用空间板壳数值方法计算了3种集中力工况下截面的剪力滞分布规律。结果表明,集中力作用下双室箱梁各翼板间存在明显的剪力滞效应,且荷载的横向作用位置对箱梁截面剪力滞效应影响较大。  相似文献   

6.
为开展单箱双室箱梁剪力滞效应的试验研究,制作了有机玻璃简支箱梁模型。在容许开裂范围内,对该试验箱梁进行集中力作用于跨中截面三腹板上方、两对称边腹板上方和中腹板上方的加载。采用DH3816应变采集仪测得跨中及1/4跨截面各关键点应变值,并用百分表测得箱梁各关键截面挠度值。测量得到的截面应力分布规律验证了箱梁截面剪力滞效应的存在。同时对该有机玻璃简支箱梁,采用空间板壳数值方法计算了3种集中力工况下截面的剪力滞分布规律。结果表明,集中力作用下双室箱梁各翼板间存在明显的剪力滞效应,且荷载的横向作用位置对箱梁截面剪力滞效应影响较大。  相似文献   

7.
以高速铁路预应力混凝土简支箱梁桥为背景,采用大型通用有限元软件Midas-FEA建立了单箱单室截面与单箱双室截面连续梁桥空间有限元模型,对两种桥梁典型截面横向受力与横向应力沿纵向传递规律进行了分析。研究结果表明:对于典型截面横向应力分析,不论截面位于梁端还是梁体跨中,单箱双室截面箱梁截面较单室截面应力平稳,与单箱单室相比,单箱双室截面顶板在箱室跨中(B-B)能有效减小顶、底板应力。对于截面横向应力沿纵向变化规律而言,截面中心线(A-A)位置,单箱单室与单箱双室截面应力变化规律与数值相差较大;箱室跨中(B-B)位置处截面应力沿纵向变化规律基本一致,且双室截面较单室截面较为平稳;单室截面边腹板剪应力大于双室截面边腹板剪应力,双室截面边、中腹板剪应力之和较单箱单室截面腹板剪应力之和大。  相似文献   

8.
采用有限元方法对混凝土连续箱梁桥的剪力滞效应进行分析,重点研究了车辆荷载类型及作用位置对箱梁剪力滞效应的影响.结果表明:不同车辆荷载作用下,箱梁剪力滞系数横向分布规律不同,荷载等级对箱梁剪力滞效应的影响较为明显;车辆荷载纵向变位对梁端截面剪力滞效应影响较大,对跨中截面影响较小,距离支座越近剪力滞效应越明显;箱梁顶板中心剪力滞系数随着车辆荷载从翼板向箱梁中心移动,将经历一个负剪力滞效应到无剪力滞效应,再到正剪力滞效应的过程,而底板剪力滞效应受荷载横向移动的影响较小;车辆荷载对其作用点附近的局部区域剪力滞效应影响较大.  相似文献   

9.
三跨连续变高度薄壁箱梁桥剪力滞效应试验研究   总被引:1,自引:0,他引:1  
介绍采用电阻应变法测定三跨连续变高度薄壁箱梁有机玻璃电测模型桥在集中荷载与均布荷载作用下应力分布的剪力滞效应 ,试验测定结果验证了用能量变分原理导出的箱梁受横向荷载作用下剪力滞效应的有限段数值解的准确性。  相似文献   

10.
选取基于翼板剪切变形规律的翘曲位移函数有限梁段法来分析箱梁在施工过程中的剪力滞效应。通过剪力滞控制微分方程和边界条件推导了相应梁段单元剪力滞系数矩阵和广义荷载列阵。以广州至珠海新建铁路预应力混凝土连续箱梁为例,分析箱梁桥悬臂施工的3个阶段在不同荷载工况作用下剪力滞系数沿梁长的分布情况,以及在体系转换后成桥运营阶段,箱梁在均布荷载和中跨跨中集中荷载作用下的剪力滞效应,并与变分法分析结果进行对比。结果表明,采用本文方法计算得到的箱梁剪力滞系数与采用变分法所得结果吻合良好,验证了该方法用于箱梁施工过程中剪力滞分析的适用性。  相似文献   

11.
钢桁腹组合梁桥作为一种新型组合结构桥梁,具有自重轻、侧向通透性好、便于施工等众多优点。但与其他箱梁相似,同样存在较为明显的剪力滞效应。为精确分析剪力滞效应产生规律,本文通过建立实体有限元模型分析钢桁腹组合梁桥的弯曲应力分布状况,并着重分析混凝土顶底板厚度和钢桁腹杆壁厚等参数对剪力滞效应的影响。通过计算结果可看出,钢桁腹组合梁桥在全桥范围内均存在较为明显的剪力滞效应,靠近支座处较跨中的剪力滞效应更为显著;顶底板厚和腹杆壁厚均对组合梁剪力滞效应有较大影响,顶板厚度影响最大,实际设计中应予以注意。  相似文献   

12.
大跨度复杂结构桥梁施工全过程结构空间受力特性研究   总被引:3,自引:2,他引:1  
研究目的:通过建立施工全过程时效和路效分析的三维非线性模型,对大跨度V形连续刚构拱组合结构桥的施工全过程空间受力特性进行研究,解决以往的桥梁设计和施工监控采用的计算方法不能有效分析混凝土箱梁的剪力滞、扭转和畸变等引起的截面应力分布不均匀问题。研究结论:分析了大跨度V形连续刚构拱组合结构桥施工全过程主梁截面顶板纵向正应力、横向压应力、腹板剪应力等截面空间应力分布和变化规律,其表现在:主梁截面顶板纵向正应力沿横向分布呈显著的不均匀性,剪力滞效应明显,与初等梁理论的预测值相异;主梁横向压应力普遍不大,且顶板应力分布不均匀程度大于底板;单箱双室截面梁三腹板剪应力分布连续变化,且中腹板的剪应力略大于边腹板剪应力,整体具有较好的规律性;施工全过程主梁纵向正应力包络线体现了最大拉应力和最大压应力的施工工况,为施工控制提供了理论基础。  相似文献   

13.
为研究单箱多室箱梁结构剪力滞效应及识别其影响参数,基于箱梁剪力滞理论分析模型,采用现行规范查图法和推荐公式法计算截面有效宽度的方法,系统分析了B/L(宽跨比)、翼缘悬臂长度等参数对箱梁剪力滞效应敏感度。结果表明:变截面单箱多室箱梁剪力滞效应主要受箱室宽度、悬臂长度、梁高及跨径控制;箱梁剪力滞效应以中跨梁段部分至支点截面次序增强;同时分析得到跨径与悬臂长度变化时,有效宽度折减系数的增减规律。  相似文献   

14.
研究目的:为了研究箱梁桥在预应力作用下的剪力滞效应,以承受预应力作用的简支箱梁为对象,基于能量变分法,结合预应力等效荷载法,建立了直线、折线和曲线布束方式的简支梁在预应力作用下的剪力滞效应解析解。针对算例简支箱梁,研究3种布束方式综合作用下箱梁的剪力滞效应,并和有限元板壳数值解进行对比分析。以高速铁路10种典型标准设计整孔简支箱梁为例,研究直线、折线和曲线布束下跨中部位应力最大点处的剪力滞系数。研究结论:通过研究得出:(1)通过本文解析方法与板壳有限元数值解的对比表明,本文解析方法可以有效计算简支梁在预应力作用下的剪力滞效应;(2)对既有高速铁路简支梁桥,直线布束在跨中引起的剪力滞效应最小、其次为曲线布束、折线布束最大;(3)本研究成果对预应力混凝土箱梁的预应力设计具有理论借鉴意义。  相似文献   

15.
钢-预应力混凝土连续组合箱形梁的整体性能分析   总被引:1,自引:0,他引:1  
视多室箱梁单元宽度为空腹桁架,取杵架的每根杆作为一平面梁单元,用三次插值函数描述其位移,单元节点位移参数用三次多项式表示为箱梁梁段单元节点位移参数的函数,这样箱梁梁段单元可分为翼板(顶底板),腹板(斜腹板),伸臂和横隔板单元。在进行有限元分析时将其直接迭加至总体刚度矩阵,编制相应的程序后可任意分析单箱多室,多箱多室及不规整的多种材料组成的组合箱梁,同时能分析箱梁的畸变,翘曲,局部变形,剪力滞后和荷载横向分布等。用本文编制的程序进行了一座复杂的钢-预应力混凝土连续组合箱梁桥计算,其计算结果与试验结果吻合良好。  相似文献   

16.
超宽幅钢箱梁高宽比较小,竖向荷载作用下超宽幅钢箱梁处于双向受弯状态,其受力特征不同于常规钢箱梁。为研究正弯矩作用下超宽幅钢箱梁剪力滞效应引起的纵桥向正应力非均匀分布特征,以宜宾临港长江大桥为工程背景,利用ANSYS建立超宽幅钢箱梁跨中梁段空间有限元模型;考虑7种典型荷载工况,计算得到不同荷载工况下超宽幅钢箱梁顶板及底板纵向剪力滞系数分布;并研究不同横隔板间距及斜拉索索距对超宽幅钢箱梁顶板及底板纵向剪力滞系数的影响。研究结果表明:(1)超宽幅钢箱梁在不同荷载作用下,结构受力存在明显的空间受力特征,双向弯曲,约束扭转、剪力滞后等力学行为值得关注;(2)正弯矩作用下顶板纵向正应力受正剪力滞效应影响,底板纵向正应力受负剪力滞影响;(3)适当增加横隔板间距及减小斜拉索索距可降低剪力滞效应;(4)超宽幅钢箱梁设计时应进行精细化分析,以明确结构空间受力特征。  相似文献   

17.
为研究变截面波形钢腹板组合箱梁的剪力滞效应,充分考虑该组合箱梁的结构和受力特点,推导加劲杆等效面积和波形钢腹板剪力流的计算公式,建立剪力滞控制微分方程,并基于给定的边界条件对微分方程进行求解,由此建立用于分析变截面波形钢腹板组合箱梁剪力滞效应的修正比拟杆法.选取两根变截面梁作为数值算例,包括单箱单室悬臂梁和单箱三室悬臂...  相似文献   

18.
为了确定单箱双室箱梁有效翼缘宽度的取值,分别按照中国现有规范中对单箱单室箱梁以及美国AASHTO规范中对单箱多室箱梁有效翼缘宽度取值的规定,对箱梁的刚度进行折减并建立梁格模型。为了对比刚度折减精度,采用有机玻璃模型进行实测研究,建立基于实体单元的有限元数值模型。通过对比不同模型在集中荷载作用下的竖向变形和纵向应力可知,按中国规范刚度折减后的挠度值与试验值相对误差为-4.4%,按美国规范则为4.8%,按中国规范刚度折减后的梁格峰值应力与实体单元数值模拟值的相对误差为-25.0%,计算结果偏小;按美国规范则为-7.2%,在10%以内。当计算单箱双室箱梁的应力时,建议按美国AASHTO规范进行刚度折减。  相似文献   

19.
为了研究考虑剪力滞效应的混凝土薄壁箱梁肋板厚度对箱梁截面正应力分布的影响,利用有限元软件建立不同肋板厚度的数值模型得到跨中上翼缘板沿横截面的剪力滞系数,对比分析薄壁箱梁不同肋板厚度下的剪力滞系数分布情况。结果表明:相同条件下考虑剪力滞效应情况的薄壁箱梁肋板越薄,横截面剪力滞系数越大,横截面应力越大;为了保证安全的前提下,薄壁箱梁肋板厚度取值应满足规范的最小值要求。  相似文献   

20.
在双线高速铁路建设中,广泛采用整体箱型梁结构形式。本文采用弹性力学有限元方法。建立了8节点六面体等参数单元的三维应力分析有限元模型。结合双线铁路预应力混凝土简支箱梁的施工,利用SAP90通用结构有限元分析程序,建立了整体箱梁三维实体单元模型,通过梁单元施加预应力荷载效应。箱梁采用后张法施工工艺,分别以预应力初张拉阶段、预应力终张拉完成、二期恒载作用为分析荷载工况,计算了箱梁跨中截面应力,给出在施工过程中箱梁跨中截面的应力随预应力张拉的变化及分布情况。通过有限元分析结果与铁路桥涵设计规范的比较得出,该箱梁结构设计合理,施工方案可行。本文所采用的分析方法和结论对于双线铁路箱粱的设计与施工有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号