首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
文章阐述了微型商用车减振器阻尼匹配设计原则,提供一种减振器阻尼初选匹配计算方法,并对某实际车型进行了减振器阻尼系数与悬架系统阻尼比匹配分析及改进设计。通过道路试验验证了改进设计的结果是可行的。  相似文献   

2.
确定了电控气动式可调阻尼减振器在"软"、"硬"阻尼状态下的阻尼力设计目标.设计了以电磁阀和摆动气缸作为驱动机构的电控气动式可调阻尼减振器,通过仿真计算分析了该减振器的阻尼特性.研制了可调阻尼减振器样件并在试验台架上进行了性能测试.结果表明,除后减振器压缩阻力外.其余各项阻尼力试验值与仿真值的平均偏差小于7%,表明减振器的仿真模型有效.将该可调阻尼减振器装车进行的道路平顺性试验表明,与被动式减振器相比,采用可调阻尼减振器可使客车的行驶平顺性得到提高.  相似文献   

3.
论述双作用筒式减振器开发设计中基本参数的选取及相关的计算方法,依据基本理论分析了相关因素对减振器阻尼特性的影响,为减振器的设计开发提供一定的基础技术支持。  相似文献   

4.
江浩斌  杨如泉  陈龙  孙丽琴 《汽车工程》2007,29(11):970-974
分析了某轿车麦弗逊式前悬架液力减振器的结构特点,建立了该减振器阻尼特性的数学模型,分别采用钱氏摄动法和有限元法计算减振器节流阀片的挠曲变形,通过仿真计算得到了相应的减振器阻尼特性,通过台架试验进行了减振器样件的阻尼性能测试。对比分析表明:仿真结果与试验结果基本一致,验证了减振器阻尼特性数学模型的有效性;根据有限元法计算的阀片变形所预测的减振器阻尼特性更接近试验值,研究结果有利于提高液力减振器阻尼特性的计算精度。  相似文献   

5.
该仿真系统的主要任务是创建各种汽车减振器的计算模型,进而仿真计算、优化减振器的阻尼和温度特性。本系统包含5个主要模块:采用SEGEL和LANG模型的各种主要减振器的阻尼计算仿真;不同结构的减振器之间的兼容组合;减振器的优化模块;涉及各减振器结构和性能参数、减振器三维图库以及试验数据的数据库;和CAD软件UNIGRAPHICS Ⅱ的接口部分。整个系统以计算流体力学、优化理论、传热学原理、机械设计和计算数学等知识为理论基础,并通过试验等手段来保证结果和实用性。使用该系统可以对减振器的阻尼精确仿真,实现减振器的快速无纸设计,达到减少设计开发费用缩短设计开发时间的目的。当然,本系统的模型对一些影响减振器性能的次要因素如工作缸内的真空现象、滞后行为等的忽略对仿真精度有一定的负面影响,而消除这些影响、提高仿真精度也是日后工作的重要。  相似文献   

6.
建立了分体式充气可调减振器阻尼特性数学模型,运用混合编程方法开发了该减振器阻尼特性的仿真分析软件。利用C Builder语言完成了应用程序模块和用户界面的设计,通过调用MATLAB中的数学函数库和图形函数库,实现了仿真结果的图形绘制功能。运用所开发的仿真软件计算了减振器的阻尼特性,并进行了减振器性能台架试验,仿真结果与试验结果基本一致,从而验证了减振器模型和仿真系统的有效性。  相似文献   

7.
发动机曲轴多级橡胶阻尼式扭转减振器的设计   总被引:2,自引:0,他引:2  
上官文斌  牛立志  黄兴 《汽车工程》2007,29(11):991-994
介绍了发动机曲轴系统中应用的多级橡胶阻尼式减振器的结构,提出了各级减振器设计参数的优化方法。计算结果表明,多级扭转减振器可以较好地控制发动机曲轴的扭振。  相似文献   

8.
沈伟 《上海汽车》1997,(1):35-39
为改善SH6600轻型客车的平顺性,提出了改进设计方案,本文介绍SH6600轻型客车悬架参数的计算和悬架振动的分析过程,给出了在各种不同道路上SH6600轻型客车1/3信频程试验分析曲线,并提出了改善SH6600轻型客车平顺性的三个方面,即重新设计后悬架钢板弹簧,提高前悬架减振器阻尼以及设计与后悬架钢板弹簧相匹配的后悬架减振器阻尼。  相似文献   

9.
汽车磁流变减振器设计中值得注意的若干技术问题   总被引:5,自引:0,他引:5  
汽车磁流变减振器利用磁流变液的流变特性可受外加磁场控制的特性,实现减振器的阻尼系数的可控,从而实现阻尼力的控制,基于磁流变换的磁流变减振器的特性是由多种因素所决定的,如磁流变液、工作模式、磁路结构、导磁材料、线圈和机械结构等。对磁流变液的性能、阻尼通道的设计、磁路中磁芯材料的选用以及磁流变减振器的体积补偿等在磁流变减振器设计中值得注意的一些问题进行了探讨。  相似文献   

10.
基于车辆参数减振器常通节流孔优化设计方法   总被引:4,自引:2,他引:2  
利用车辆参数和平安比,得到了减振器分段线性阻尼系数,建立了与车辆最佳阻尼匹配所需减振器的速度特性.根据减振器开阀前速度特性要求,建立了基于车辆参数的常通节流孔曲线拟合优化设计方法.通过实例,对某汽车减振器常通节流孔进行了优化设计,对设计的减振器进行了阻尼特性和整车振动试验.结果表明,基于车辆参数的常通节流孔优化设计方法正确,参数设计值可靠.  相似文献   

11.
胡子正  崔靖 《汽车技术》1999,(12):13-15,28
减振器阻尼的下降将对车轮离地概率及整车操纵稳定性不产生不利影响。研究表明:减振器阻尼下降到原设计值的20%以下时,车轮增,行驶状态恶一检时应强化对减振器技术状态况的监测。  相似文献   

12.
汽车转向系减振器原理及其阻尼特性的试验分析   总被引:3,自引:2,他引:3  
介绍了汽车转向系减振器的原理及其发展概况,提出了应用高频电液伺振器进行转向系减振器阻尼特性测试的试验技术及数据处理分析方法,并给出了一种轿转转向系减振器阻尼特性的试验分析结果,建立了其非线性阻尼参数模型。  相似文献   

13.
轿车悬架阻尼二阶最优控制设计方法研究   总被引:3,自引:1,他引:3  
吴元杰  陈宝莲 《汽车工程》1999,21(6):353-357
本文以半动悬架与二阶最优控制理论为基础,通过被动悬架阻尼的主动力表示,结合对最优控制力的分解以及最优评价指标,振动加速功率谱密函数与系统振动阻尼之间的关系的研究,建立了多自由度汽车振动系统在随机输入下以振动加速度功率谱密度函数极小为目标的悬架最优减振器阻尼参数的方法,并给出了7自由汽车振动最优减振器阻尼设计实例。  相似文献   

14.
姚杰 《北京汽车》2010,(4):38-40
文中对减振阻尼特性空程畸变的成因、相关阀系零件设计匹配的验算以及试验方法和评估标准做了论述,并在某车型后减振器设计中对阀系结构设计做了验证,计算结果与试验结果一致,均满足了产品要求。该流程对同类减振器总成设计验证有一定的指导意义。  相似文献   

15.
曲立清  孙汝蛟 《公路》2006,(4):129-134
鉴于目前实桥上高阻尼橡胶圈是利用的高阻尼橡胶的挤压性能,而不是耗能更好的剪切性能,材料利用率低,本文通过高阻尼橡胶减振器试件剪切性能试验,获得了频率、应变幅值、厚度等各种参数对高阻尼橡胶减振器试件的影响规律,并利用高阻尼橡胶剪切耗能优于挤压耗能的特性,提出了一种简便可行的外置式拉索减振器的设计方法;最后讨论了减振器刚度、安装位置、橡胶材料、拉索长度等参数对减振效果的影响。  相似文献   

16.
基于某阀控可调减振器内置电磁阀、活塞阀、底阀的理论模型,利用AMESim建立减振器机电液气耦合的仿真模型,重点考虑了电磁阀结构中导阀与溢流块的耦合关系,采用该模型对减振器在不同电流、活塞速度下进行了阻尼力示功特性和速度特性仿真,仿真计算结果与台架试验结果吻合良好,利用该模型研究了阻尼小孔、预紧力和常通节流孔等关键设计参数对阻尼特性的影响。  相似文献   

17.
汽车筒式液阻减振器技术的发展   总被引:29,自引:1,他引:29  
分析了汽车乘坐舒适性/行驶平顺性和操作稳定性对筒式液阻减振器特性的要求,提出汽车在不同行驶工况减振器特性的要求是不的;分析了被动式减振器的发展历程及非充气和充气减振器的特点,阐述了机械控制式可调阻尼减振器,电子控制式减振器以及电流变和磁流变液体减器等的结构特点,工作原理及其动态特性;分析了筒式液阻减振器其于经验设计/实验修正开发方法的缺点,阐述了基于CAD/CAE技术的现代设计开发方法的过程及其关键问题,最后分析了我国筒式液阻减振器技术的发展状况及问题,展望了减振器技术的发展前景。  相似文献   

18.
为了防止液压减振器因工作液的损失而丧失阻尼效能,其机械密封结构的设计是重要问题,阐述减振器机械减密封的原理和优点,介绍其结构参数设计包括弹簧设计,油封材料选用和尺寸设计以及O型密封圈沟槽设计等,可供产品开发参考。  相似文献   

19.
彭超  贾楠  李红勋 《专用汽车》2017,(11):102-106
针对某型伤员运输车设计一种新型悬架——硅油悬架,研究了悬架减振器的结构及原理,通过建立悬架力学模型,反映了硅油悬架的力学特性,提出并验证了通过改变悬架减振器外部阻尼孔节流面积控制油液流动能起到变阻尼,通过悬架减振器与副油缸联通控制减振器储油容积来实现变刚度的方案。  相似文献   

20.
提出了一种简单有效的位移相关减振器开槽段阻尼优化设计方法。利用关键速度点的阻尼力对减振器阻尼曲线进行简化,对减振器开槽段关键速度点处的阻尼力进行仿真优化,获得了理想的减振器开槽段阻尼特性曲线。将减振器在目标车后悬架进行了实车试验,结果表明,该位移相关减振器对目标车的乘坐舒适性有明显改善,验证了阻尼优化设计方法的有效性与实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号