首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vehicular Ad-Hoc Networks (VANETs) are an emerging technology soon to be brought to everyday life. Many Intelligent Transport Systems (ITS) services that are nowadays performed with expensive infrastructure, like reliable traffic monitoring and car accident detection, can be enhanced and even entirely provided through this technology. In this paper, we propose and assess how to use VANETs for collecting vehicular traffic measurements. We provide two VANET sampling protocols, named SAME and TOME, and we design and implement an application for one of them, to perform real time incident detection. The proposed framework is validated through simulations of both vehicular micro-mobility and communications on the 68 km highway that surrounds Rome, Italy. Vehicular traffic is generated based on a large real GPS traces set measured on the same highway, involving about ten thousand vehicles over many days. We show that the sampling monitoring protocol, SAME, collects data in few seconds with relative errors less than 10%, whereas the exhaustive protocol TOME allows almost fully accurate estimates within few tens of seconds. We also investigate the effect of a limited deployment of the VANET technology on board of vehicles. Both traffic monitoring and incident detection are shown to still be feasible with just 50% of equipped vehicles.  相似文献   

2.
Connected and automated vehicle technologies hold great promises for improving the safety, efficiency, and environmental impacts of the transportation sector. In this study we are concerned with multihop connectivity of instantaneous vehicular one-dimensional ad hoc networks (VANETs) formed by connected vehicles along a communication path in a road network with given either vehicle locations or traffic densities, market penetration rates, and transmission ranges. We first define a new random variable for the location of the end node of a communication chain, which is a discrete random variable with given vehicle locations and a mixed random variable with given traffic densities. Then recursive, iterative, or differential equation models of instantaneous multihop connectivity between two communication nodes are derived from the relationships between end node probability mass or density function and connectivity. Assuming a simple communication model, the new models are applicable for general distribution patterns of vehicles and communication nodes, including non-evenly placed vehicles and nonhomogeneous Poisson distributions of nodes. With given vehicle locations, the computational cost for this new model is linear to the number of vehicles; with given traffic densities, we derive a new closed-form connectivity model for homogeneous Poisson distributions of communication nodes and an approximate closed-form model when distribution patterns of communication nodes are given by spatial renewal processes. We then apply the models to evaluate impacts on connectivity of traffic patterns, including shock waves, and road-side stations. The connectivity model could be helpful for designing routing protocols in VANETs and developing their applications in transportation systems.  相似文献   

3.
Broadcast capacity of the entire network is one of the fundamental properties of vehicular ad hoc networks (VANETs). It measures how efficiently the information can be transmitted in the network and usually it is limited by the interference between the concurrent transmissions in the physical layer of the network. This study defines the broadcast capacity of vehicular ad hoc network as the maximum successful concurrent transmissions. In other words, we measure the maximum number of packets which can be transmitted in a VANET simultaneously, which characterizes how fast a new message such as a traffic incident can be transmitted in a VANET. Integer programming (IP) models are first developed to explore the maximum number of successful receiving nodes as well as the maximum number of transmitting nodes in a VANET. The models embed an traffic flow model in the optimization problem. Since IP model cannot be efficiently solved as the network size increases, this study develops a statistical model to predict the network capacity based on the significant parameters in the transportation and communication networks. MITSIMLab is used to generate the necessary traffic flow data. Response surface method and linear regression technologies are applied to build the statistical models. Thus, this paper brings together an array of tools to solve the broadcast capacity problem in VANETs. The proposed methodology provides an efficient approach to estimate the performance of a VANET in real-time, which will impact the efficacy of travel decision making.  相似文献   

4.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).  相似文献   

5.
The vehicular ad hoc network has great potential in improving traffic safety. One of the most important and interesting issues in the research community is the safety evaluation with limited penetration rates of vehicles equipped with inter-vehicular communications. In this paper, a stochastic model is proposed for analyzing the vehicle chain collisions. It takes into account the influences of different penetration rates, the stochastic nature of inter-vehicular distance distribution, and the different kinematic parameters related to driver and vehicle. The usability and accuracy of this model is tested and proved by comparative experiments with Monte Carlo simulations. The collision outcomes of a platoon in different penetration rates and traffic scenarios are also analyzed based on this model. These results are useful to provide theoretical insights into the safety control of a heterogeneous platoon.  相似文献   

6.
Motivated by the advancement in connected and autonomous vehicle technologies, this paper develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints, and it uses the global information structure such that each vehicle shares information with all the other vehicles. A constrained optimization based control scheme is proposed to ensure an entire platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting the solution properties of the underlying optimization problem and using primal-dual formulation, this paper develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics. Extensive numerical simulations are conducted to validate the efficiency of the proposed algorithms.  相似文献   

7.
Length-based vehicle classification is an important topic in traffic engineering, because estimation of traffic speed from single loop detectors usually requires the knowledge of vehicle length. In this paper, we present an algorithm that can classify vehicles passing by a loop detector into two categories: long vehicles and regular cars. The proposed algorithm takes advantage of event-based loop detector data that contains every vehicle detector actuation and de-actuation “event”, therefore time gaps between consecutive vehicles and detector occupation time for each vehicle can be easily derived. The proposed algorithm is based on an intuitive observation that, for a vehicle platoon, longer vehicles in the platoon will have relatively longer detector occupation time. Therefore, we can identify longer vehicles by examining the changes of occupation time in a vehicle platoon. The method was tested using the event-based data collected from Trunk Highway 55 in Minnesota, which is a high speed arterial corridor controlled by semi-actuated coordinated traffic signals. The result shows that the proposed method can correctly classify most of the vehicles passing by a single loop detector.  相似文献   

8.
We have carried out car-following experiments with a 25-car-platoon on an open road section to study the relation between a car’s speed and its spacing under various traffic conditions, in the hope to resolve a controversy surrounding this fundamental relation of vehicular traffic. In this paper we extend our previous analysis of these experiments, and report new experimental findings. In particular, we reveal that the platoon length (hence the average spacing within a platoon) might be significantly different even if the average velocity of the platoon is essentially the same. The findings further demonstrate that the traffic states span a 2D region in the speed-spacing (or density) plane. The common practice of using a single speed-spacing curve to model vehicular traffic ignores the variability and imprecision of human driving and is therefore inadequate. We have proposed a car-following model based on a mechanism that in certain ranges of speed and spacing, drivers are insensitive to the changes in spacing when the velocity differences between cars are small. It was shown that the model can reproduce the experimental results well.  相似文献   

9.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

10.
With the advent of emerging wireless communication technologies, tremendous efforts have been put on promoting the safety and efficiency of transportation services by developing innovative applications. In particular, there has been significant interest in accessing information stored at RSUs (Roadside Units). The unique characteristics in vehicular networks, such as dynamic traffic factors including vehicle arrival rate, dwell time and data access patterns, bring us new challenges on data dissemination. This work dedicates to the investigation of timely and adaptive data dissemination in the dynamically changing traffic environment. Firstly, we derive an analytical model to explore and examine the effects of the dynamic traffic factors. In light of the theoretical results, an on-line scheduling algorithm is proposed for adaptive data dissemination. Finally, we evaluate performance of the new algorithm in a variety of circumstances. The simulation results demonstrate satisfactory performance of the proposed algorithm.  相似文献   

11.
The automotive industry is witnessing a revolution with the advent of advanced vehicular technologies, smart vehicle options, and fuel alternatives. However, there is very limited research on consumer preferences for such advanced vehicular technologies. The deployment and penetration of advanced vehicular technologies in the marketplace, and planning for possible market adoption scenarios, calls for the collection and analysis of consumer preference data related to these emerging technologies. This study aims to address this need, offering a detailed analysis of consumer preference for alternative fuel types and technology options using data collected in stated choice experiments conducted on a sample of consumers from six metropolitan cities in South Korea. The results indicate that there is considerable heterogeneity in consumer preferences for various smart technology options such as wireless internet, vehicle connectivity, and voice command features, but relatively less heterogeneity in the preference for smart vehicle applications such as real-time traveler information on parking and traffic conditions.  相似文献   

12.
Recent developments of information and communication technologies (ICT) have enabled vehicles to timely communicate with each other through wireless technologies, which will form future (intelligent) traffic systems (ITS) consisting of so-called connected vehicles. Cooperative driving with the connected vehicles is regarded as a promising driving pattern to significantly improve transportation efficiency and traffic safety. Nevertheless, unreliable vehicular communications also introduce packet loss and transmission delay when vehicular kinetic information or control commands are disseminated among vehicles, which brings more challenges in the system modeling and optimization. Currently, no data has been yet available for the calibration and validation of a model for ITS, and most research has been only conducted for a theoretical point of view. Along this line, this paper focuses on the (theoretical) development of a more general (microscopic) traffic model which enables the cooperative driving behavior via a so-called inter-vehicle communication (IVC). To this end, we design a consensus-based controller for the cooperative driving system (CDS) considering (intelligent) traffic flow that consists of many platoons moving together. More specifically, the IEEE 802.11p, the de facto vehicular networking standard required to support ITS applications, is selected as the IVC protocols of the CDS, in order to investigate how the vehicular communications affect the features of intelligent traffic flow. This study essentially explores the relationship between IVC and cooperative driving, which can be exploited as the reference for the CDS optimization and design.  相似文献   

13.
This paper is a comparative study of the performance of constant-time-gap autonomous control systems and co-operative longitudinal control systems that use inter-vehicle communication. Analytical results show that the minimum time gap that can be achieved in autonomous control is limited by the bandwidth of the internal dynamics of the vehicle. Experimental results from typical sensors and actuators are used to show that in practice it is very difficult to achieve a time gap less than 1 s with autonomous vehicle following. This translates to an inter-vehicle spacing of 30 m at highway speeds and a theoretical maximum traffic flow of about 3000 vehicles per hour. The quality of radar range and range rate measurements pose limitations on the spacing accuracy and ride quality that can be achieved in autonomous control. Dramatic improvements in the trade-off between ride quality and spacing accuracy can be obtained merely by replacing radar range rate in the autonomous control algorithm with the difference between the measured velocities of the two cars (a rudimentary form of co-operation). As a baseline comparison, the experimental performance of fully co-operative control is presented. An inter-vehicle spacing of 6.5 m is maintained in a platoon of 8 co-operative vehicles with an excellent ride quality and an accuracy of ±20 cm. Extending this to a 10-vehicle platoon makes it possible to achieve theoretical maximum traffic flows of about 6400 vehicles per hour.Another issue of importance addressed in the paper is the need to accommodate malfunctions in radar (ranging sensor) measurements. Measurement errors can occur due to hardware malfunctions as well as due to road curves, grades and the highway environment in the case of large inter-vehicle spacing. The ability of a co-operative control system to monitor the health of the radar and correct for such errors and malfunctions is demonstrated experimentally.  相似文献   

14.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

15.
Frequency-domain analysis has been successfully used to (i) predict the amplification of traffic oscillations along a platoon of vehicles with nonlinear car-following laws and (ii) measure traffic oscillation properties (e.g., periodicity, magnitude) from field data. This paper proposes a new method to calibrate nonlinear car-following laws based on real-world vehicle trajectories, such that oscillation prediction (based on the calibrated car-following laws) and measurement from the same data can be compared and validated. This calibration method, for the first time, takes into account not only the driver’s car-following behavior but also the vehicle trajectory’s time-domain (e.g., location, speed) and frequency-domain properties (e.g., peak oscillation amplitude). We use Newell’s car-following model (1961) as an example and calibrate its parameters based on a penalty-based maximum likelihood estimation procedure. A series of experiments using Next Generation Simulation (NGSIM) data are conducted to illustrate the applicability and performance of the proposed approach. Results show that the calibrated car-following models are able to simultaneously reproduce observed driver behavior, time-domain trajectories, and oscillation propagation along the platoon with reasonable accuracy.  相似文献   

16.
ABSTRACT

Platooning is an emerging transportation practice that has the potential to solve the problems of the burgeoning transportation industry. A platoon is a group of vehicles, with vehicle to vehicle communication, that travel closely behind one another such that the platoon can accelerate, brake and cruise together. Platoons can improve road safety, be energy efficient and reduce costs. Its complete socio-economic benefits include congestion mitigation, smoother traffic flow, better lane usage and throughput, incentives for green logistics and driver safety. The long-term effect of platooning on road transportation, if extensively deployed, would be better organised traffic flow and efficient tracking of vehicles on the road ushering a multilevel positive impact on the industry. In this study, we attempt to answer the critical question of whether platooning is an adoptable practice in the near future and discuss an agenda to take platooning closer to implementation on the ground by highlighting the opportunities for future research. We also present a conceptual framework to help researchers, academicians, policy makers and practitioners for the adoption of platooning into the transportation industry.  相似文献   

17.
Existing research on platoon dispersion models either describe homogeneous traffic flow feature, or are in lack of analytical solutions. By analyzing the field data, the truncated mixed simplified phase‐type distribution is proved to be capable of capturing the characteristics of heterogeneous traffic flow with an excellent fitting result. In light of this, we derive a generic heterogeneous platoon dispersion model with truncated mixed simplified phase‐type of speed in the forms of integrable functions. Numerical case studies are conducted to compare the performance of the proposed model and the conventional models (i.e., the Robertson model and truncated mixed Gaussian model). The results show that the proposed model not only better captures the platoon dispersion laws of heterogeneous traffic flow, but also presents higher computational efficiency, which provides practical implications on traffic signal control. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
We evaluate the implications of a range of driving patterns on the tank-to-wheel energy use of plug-in hybrid electric vehicles. The driving patterns, which reflect short distance, low speed, and congested city driving to long distance, high speed, and uncongested highway driving, are estimated using an approach that involves linked traffic assignment and vehicle motion models. We find substantial variation in tank-to-wheel energy use of plug-in hybrid electric vehicles across driving patterns. Tank-to-wheel petroleum energy use on a per kilometer basis is lowest for the city and highest for the highway driving, with the opposite holding for a conventional internal combustion engine vehicle.  相似文献   

19.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles.  相似文献   

20.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号