首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

2.
Priority for public transit includes a large variety of measures, including improvements to infrastructure and vehicles. For vehicles, the low floor concept is of particular importance. The central points of priority measures, however, are improvements of traffic control by traffic signals. Here, an improved sensitivity regarding public transit vehicles is the key to a remarkable reduction of factors causing delay. Different techniques for a traffic actuated signal control and different strategies regarding the degree of priority are applied. Thus, especially the reliability of public transit operations is increased. The priority efforts must be embedded in an integrated plan covering the whole urban or metropolitan transportation system.  相似文献   

3.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The analysis, assessment and estimation of noise levels in the vicinity of intersections is a more complex problem than a similar analysis for roads and streets. This is due to the varied geometry of the intersections, differences in the loads of individual movements, participation of heavy vehicles and mass transport vehicles, as well as the various types of traffic management and traffic control. This article analyses the influence of intersection type and traffic characteristics on the noise levels in the vicinity of classic channelized intersections with signalization, roundabouts and signalized roundabouts. Based on the conducted measurements, it has been established that, with comparable traffic parameters and the same distance from the geometric centre of the intersection, the LAeq value for signalized roundabouts is 2.5–10.8 dB higher in comparison to classic channelized intersections with signalization and 3.3–6.7 dB higher in relations to the analysed roundabout. Additionally the differences between LAeq levels at individual entries at the same signalized roundabouts may reach the value of approximately 4.5 dB. Such situation is influenced by differences in the intersection geometry, diameter of the intersection’s central island, traffic flow type, traffic management at the entries and traffic volume, especially the amount and traffic movements of multiple axle heavy vehicles. These factors have been analysed in detail in relation to signalized roundabouts in this paper.  相似文献   

5.
This paper presents a real-time signal control system that optimizes signal settings based on minimization of person delay on arterials. The system’s underlying mixed integer linear program minimizes person delay by explicitly accounting for the passenger occupancy of autos and transit vehicles. This way it can provide signal priority to transit vehicles in an efficient way even when they travel in conflicting directions. Furthermore, it recognizes the importance of schedule adherence for reliable transit operations and accounts for it by assigning an additional weighting factor on transit delays. This introduces another criterion for resolving the issue of assigning priority to conflicting transit routes. At the same time, the system maintains auto vehicle progression by introducing the appropriate delays associated with interruptions of platoons. In addition to the fact that it utilizes readily available technologies to obtain the inputs for the optimization, the system’s feasibility in real-world settings is enhanced by its low computation time. The proposed signal control system is tested on a four-intersection segment of San Pablo Avenue arterial located in Berkeley, California. The findings show the system’s capability to outperform pretimed (i.e., fixed-time) optimal signal settings by reducing total person delay. They have also demonstrated its success in reducing bus person delay by efficiently providing priority to transit vehicles even when they travel in conflicting directions.  相似文献   

6.
In the wake of traffic congestion at intersections, it is imperative to shorten delays in corridors with stochastic arrivals. Coordinated adaptive control can adjust green time flexibly to deal with a stochastic demand, while maintaining a minimum through-band for coordinated intersections. In this paper, a multi-stage stochastic program based on phase clearance reliability (PCR) is proposed to optimize base timing plans and green split adjustments of coordinated intersections under adaptive control. The objective is to minimize the expected intersection delay and overflow of the coordinated approach. The overflow or oversaturated effect is explicitly addressed in the delay calculation, which greatly increases the modeling complexity due to the interaction of overflow delays across cycles. The notion of PCR separates the otherwise related green time settings of consecutive cycles into a number of stages, in which the base timing plan and actual timing plan in different cycles are handled sequentially. We then develop a PCR based solution algorithm to solve the problem, and apply the model and the solution algorithm to actual intersections in Shanghai to investigate its performance as compared with Allsop’s method and Webster’s method. Preliminary results show the PCR-based method can significantly shorten delays and almost eliminates overflow for the coordinated approaches, with acceptable delay increases of the non-coordinated approaches. A comparison between the proposed coordinated adaptive logic and a coordinated actuated logic is also conducted in the case study to show the advantages and disadvantages.  相似文献   

7.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.  相似文献   

8.
9.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

10.
This paper reports on a study that developed a next‐generation Transit Signal Priority (TSP) strategy, Adaptive TSP, that controls adaptively transit operations of high frequency routes using traffic signals, thus automating the operations control task and relieving transit agencies of this burden. The underlying algorithm is based on Reinforcement Learning (RL), an emerging Artificial Intelligence method. The developed RL agent is responsible for determining the best duration of each signal phase such that transit vehicles can recover to the scheduled headway taking into consideration practical phase length constraints. A case study was carried out by employing the microscopic traffic simulation software Paramics to simulate transit and traffic operations at one signalized intersection along the King Streetcar route in downtown Toronto. The results show that the control policy learned by the agent could effectively reduce the transit headway deviation and causes smaller disruption to cross street traffic compared with the existing unconditional transit signal priority algorithm.  相似文献   

11.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies.  相似文献   

12.
The exclusive pedestrian phase (EPP) has been used in many countries to promote walking around downtown areas by increasing the ease and convenience of pedestrian crossing. However, its applicability has not been systematically demonstrated, especially when an intersection is operated in actuated mode. This paper presents an extensive simulation‐based analysis of the applicability of EPP as compared with a normal concurrent pedestrian‐phase pattern at an isolated intersection controlled by actuated logic. Actuated signal control logics for EPP‐actuated and conventional concurrent pedestrian phase‐actuated controls are developed. Both of these control logics consider pedestrian crossing demands and can adapt to changes in vehicle traffic to reduce vehicle delay as well. A simulation model of a two‐phase controlled intersection is built and calibrated based on field data using VISSIM (PTV Planung Transport Verkehr AG in Karlsruhe, Germany). Extensive analysis is conducted to reveal fully the applicable EPP domain in terms of vehicle traffic demand, pedestrian demand, vehicle turning ratio, and pedestrian diagonal crossing ratio. The results show that the performance and applicable domain of EPP are jointly determined by those five factors. EPP significantly outperforms concurrent pedestrian phase if the vehicle turning ratio is greater than 0.6 and the pedestrian diagonal crossing ratio is greater than 0.6. These results can help traffic engineers in choosing the appropriate pedestrian‐phase patterns at actuated signalized intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Conceptually, an oversaturated traffic intersection is defined as one where traffic demand exceeds the capacity. Such a definition, however, cannot be applied directly to identify oversaturated intersections because measuring traffic demand under congested conditions is not an easy task, particularly with fixed-location sensors. In this paper, we circumvent this issue by quantifying the detrimental effects of oversaturation on signal operations, both temporally and spatially. The detrimental effect is characterized temporally by a residual queue at the end of a cycle, which will require a portion of green time in the next cycle; or spatially by a spill-over from downstream traffic whereby usable green time is reduced because of the downstream blockage. The oversaturation severity index (OSI), in either the temporal dimension (T-OSI) or the spatial dimension (S-OSI) can then be measured using high-resolution traffic signal data by calculating the ratio between the unusable green time due to detrimental effects and the total available green time in a cycle. To quantify the T-OSI, in this paper, we adopt a shockwave-based queue estimation algorithm to estimate the residual queue length. S-OSI can be identified by a phenomenon denoted as “Queue-Over-Detector (QOD)”, which is the condition when high occupancy on a detector is caused by downstream congestion. We believe that the persistence duration and the spatial extent with OSI greater than zero provide an important indicator for measuring traffic network performance so that corresponding congestion mitigation strategies can be prepared. The proposed algorithms for identifying oversaturated intersections and quantifying the oversaturation severity index have been field-tested using traffic signal data from a major arterial in the Twin Cities of Minnesota.  相似文献   

14.
This study investigates the effect of traffic signal coordination on emissions and compares it with their effects on operational performance measures of delay and stops. Various platoon ratios are obtained by simulating cycle lengths and offsets. Our results indicate that the impact of the cycle length on delay is more significant than those on stops and emissions for under-saturation traffic conditions. Given a fixed cycle length, increasing the platoon ratio can reduce delay, stops, and emissions, with reduction in emissions being correlated with stops than delay. The effect on emissions from the platoon arrival with respect to the onset of green or red indication is identified. With the same cycle length and platoon ratio, the early arrival situation, when the leading vehicles of a platoon encounters the red signal, can generate more emissions than are associated with late platoon arrival, when the last few vehicles in a platoon are stopped at the intersection by the onset of the red signal.  相似文献   

15.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

16.
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2–24 h in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin–destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-h forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 min. Similarly, the average over these 100 links of the median test error is found to be 21 min when predicting departure delays for a 2-h forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.  相似文献   

17.
We propose a fuzzy logic control for the integrated signal operation of a diamond interchange and its ramp meter, to improve traffic flows on surface streets and motorway. This fuzzy logic diamond interchange (FLDI) comprises of three modules: fuzzy phase timing (FPT) module that controls the green time extension of the current phase, phase logic selection (PLS) module that decides the next phase based on the pre‐defined phase sequence or phase logic and, fuzzy ramp‐metering (FRM) module that determines the cycle time of the ramp meter based on current traffic volumes and conditions of the surface streets and the motorways. The FLDI is implemented in Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Network Version 6 (AIMSUN 6), and compared with the traffic actuated signal control. Simulation results show that the FLDI outperforms the traffic‐actuated models with lower system total travel time, average delay, and improvements in downstream average speed and average delay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Two three‐phase actuated control strategies at diamond interchanges were investigated for different ramp spacings and traffic patterns. An advanced experimental design, hardware‐in‐the‐loop control, was employed for the simulation study. Operational performance was identified in terms of cycle length, average delay and total stops. Experimental results showed that the two phasing strategies gave similar performance in terms of cycle length and average delay, but not stops. The cycle length of three‐phase operation increased slightly as the ramp spacing became wider. The delay of each strategy was dependent on the traffic pattern, but there was a distinct movement preference for each strategy. The total stops decreased as the spacing increased, and it was the most sensitive variable for the studied traffic demand level. It was also shown that the concept of the hardware‐in‐the‐loop control provides an effective way to evaluate the signal phasing and control strategies.  相似文献   

19.
This article presents a bus priority method for traffic light control based on two modes of operation: immediate and controlled departure. The immediate departure mode is a standard procedure in which the intersection controller grants priority upon request of the bus. Controlled departure acts to avoid a second stop of the bus at the end of the queue formed during red by holding the bus at the bus stop, while still granting priority to the bus lane. Selection of one of the two modes is based on intersection cost that includes bus delay and the impact on the overall traffic near the intersection. The method is applied in a constant cycle scenario where green recall and green extension can only be granted within certain limits. Numerical examples illustrate the application of the approach.  相似文献   

20.
The interaction between rail transit and the urban property market is a vital foundation for planning transit-based policy such as Value Capture and Transit Oriented Development (TOD). Yet only few studies have reported the impact of transit access on commercial property value. This paper presents empirical evidence from Wuhan, China, to enrich the knowledge in the subject area. Spatial autoregressive models were employed to estimate the commercial value capture, based on 676 observations along Wuhan’s metro rail line through the main business districts. Value appreciation was discovered within the 400 m radius of road network distance from Metro stations. The transit access premiums present as two tiers: 16.7% for the 0–100 m core area and approximately 8.0% within the 100–400 m radius. The result demonstrates the potential benefit of adopting value capture and optimising TOD planning to support sustainable urban rail transit investment. Amid rapid urbanisation in China, the evidence reported here could help better inform cities, across the developing world and beyond, of the benefits of adopting rail transit-based policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号