首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this paper is to investigate the impact of pre-trip information on auto commuters’ choice behavior. The analysis is based on an extensive home-interview survey of commuters in the Taichung metropolitan area in Taiwan. A joint model for route and departure time decisions with and without pre-trip information is formulated. The model specifications are developed for both the systematic and random components. In particular, econometric issues associated with specifying the random error structure are addressed for parameter estimation purposes. Insights into the effects of attributes are obtained through the analysis of the model's performance and estimated parameter values. A probit model form is used for the joint model, allowing the introduction of state dependence and correlation in the model specification. The results underscore the important relationship between the different characteristics and the propensity of commuter choice behavior under two scenarios, with and without pre-trip information.  相似文献   

2.
The primary purpose of this study was to investigate how relative associations between travel time, costs, and land use patterns where people live and work impact modal choice and trip chaining patterns in the Central Puget Sound (Seattle) region. By using a tour-based modeling framework and highly detailed land use and travel data, this study attempts to add detail on the specific land use changes necessary to address different types of travel, and to develop a comparative framework by which the relative impact of travel time and urban form changes can be assessed. A discrete choice modeling framework adjusted for demographic factors and assessed the relative effect of travel time, costs, and urban form on mode choice and trip chaining characteristics for the three tour types. The tour based modeling approach increased the ability to understand the relative contribution of urban form, time, and costs in explaining mode choice and tour complexity for home and work related travel. Urban form at residential and employment locations, and travel time and cost were significant predictors of travel choice. Travel time was the strongest predictor of mode choice while urban form the strongest predictor of the number of stops within a tour. Results show that reductions in highway travel time are associated with less transit use and walking. Land use patterns where respondents work predicted mode choice for mid day and journey to work travel.
T. Keith LawtonEmail:

Lawrence Frank   is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley   is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage   is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman   is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton   transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting.  相似文献   

3.
    
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

4.
Travel time functions specify the relationship between the travel time on a road and the volume of traffic on the road. Until recently, the parameters of travel time functions were rarely estimated in practice; however, a compelling case can be made for the empirical examination of these functions. This paper reviews, and qualitatively evaluates, a range of options for developing a set of travel time functions. A hierarchy of travel time functions is defined based on four levels of network detail: area, corridor, route and link. This hierarchy is illustrated by considering the development of travel time functions for Adelaide. Alternative sources of data for estimating travel time functions are identified.

In general, the costs and benefits increase as the travel time functions are estimated at finer levels of network detail. The costs of developing travel time functions include data acquisition costs and analysis costs. The benefits include the potential for reducing prediction errors, the degree of application flexibility and the policy sensitivity of the travel time functions.  相似文献   

5.
Current benefits from travel time savings have only been related to the benefits from reducing mean travel time. Some previous attempts of including variability in the generalised cost function have mainly assumed commuters with fixed arrival time. This paper presents a comprehensive framework for valuing travel time variability that allows for any journey purpose and arrival time constraint. The proposed model is based on the expected utility approach and the mean-standard deviation approach. Stated Preference methods are considered the best technique for providing the data for calibrating the models. The values of time derived from the models are highly influenced by the value of travel time variability and it strongly depends on the probability distribution function travellers are faced with.  相似文献   

6.
In mode choice decision, travelers consider not only travel time but also reliability of its modes. In this paper, reliability was expressed in terms of standard deviation and maximum delay that were measured based on triangular distribution. In order to estimate value of time and value of reliability, the Multinomial and Nested Logit models were used. The analysis results revealed that reliability is an important factor affecting mode choice decisions. Elasticity is used to estimate the impacts of the different policies and system improvements for water transportation mode. Among these policies, decision maker can assess and select the best alternative by doing the benefit and cost analysis based on a new market share, the value of time, and the value of reliability. Finally, a set of promising policies and system improvement of the water transportation were proposed.  相似文献   

7.
This paper derives a measure of travel time variability for travellers equipped with scheduling preferences defined in terms of time-varying utility rates, and who choose departure time optimally. The corresponding value of travel time variability is a constant that depends only on preference parameters. The measure is unique in being additive with respect to independent parts of a trip. It has the variance of travel time as a special case. Extension is provided to the case of travellers who use a scheduled service with fixed headway.  相似文献   

8.
    
Because individuals may misperceive travel time distributions, using the implied reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost functions still have a mean–variance form when misperception is considered, but the value of travel time variability is higher. We estimate these two models with stated-preference data and calculate the empirical cost of misperception. We find that: (i) travelers are mostly pessimistic and thus tend to choose departure times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving the travel time distribution might be nontrivial when time is valued differently over the time of day and is substantial for some people.  相似文献   

9.
To improve the quality of travel time information provided to motorists, there is a need to move away from point forecasts of travel time. Specifically, techniques are needed which predict the range of travel times which motorists may experience. This paper focuses on travel time prediction on motorways and evaluates three models for predicting the travel time range in real time as well as up to 1 h ahead. The first model, termed lane by lane tracing, relies on speed data from each lane to replicate the trajectories of relatively slow and relatively fast vehicles on the basis of speed differences across the lanes. The second model is based on the relationship between mean travel time (estimated using a neural network model) and driver-to-driver travel time variability. The results provide insight into the relative merits of the proposed techniques and confirm that they provide a basis for reliable travel time range prediction in the short-term prediction context (up to 1 h ahead).  相似文献   

10.
A characteristic of low frequency probe vehicle data is that vehicles traverse multiple network components (e.g., links) between consecutive position samplings, creating challenges for (i) the allocation of the measured travel time to the traversed components, and (ii) the consistent estimation of component travel time distribution parameters. This paper shows that the solution to these problems depends on whether sampling is based on time (e.g., one report every minute) or space (e.g., one every 500 m). For the special case of segments with uniform space-mean speeds, explicit formulae are derived under both sampling principles for the likelihood of the measurements and the allocation of travel time. It is shown that time-based sampling is biased towards measurements where a disproportionally long time is spent on the last segment. Numerical experiments show that an incorrect likelihood formulation can lead to significantly biased parameter estimates depending on the shapes of the travel time distributions. The analysis reveals that the sampling protocol needs to be considered in travel time estimation using probe vehicle data.  相似文献   

11.
The value of travel time variance   总被引:1,自引:0,他引:1  
This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time.  相似文献   

12.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

13.
Modelling the temporal response of travellers to transport policy interventions has rapidly emerged as a major issue in many practical transport planning studies and is recognised to hold particular challenges. The importance of congestion and its variation over the day, together with the emergence of time-dependent road user charging as a policy tool, emphasise the need to understand whether and how travellers will change the timing of their journeys. For practical planning studies, analysts face a major issue of relating temporal changes to other behavioural changes that are likely to result from policy or exogenous changes. In particular, the relative sensitivity of time and mode switching has been difficult to resolve. This paper describes a study undertaken to determine the relative sensitivity of mode and time of day choice to changes in travel times and costs and to investigate whether evidence exists of varying magnitudes of unobservable influences in time of day switching. The study draws on data from three related stated preference studies undertaken over the past decade in the United Kingdom and the Netherlands and uses error components logit models to investigate the patterns of substitution between mode and time of day alternatives. It is concluded that the magnitude of unobserved influences on time switching depends significantly on the magnitudes of the time switches considered. With time periods of the magnitude generally represented in practical modelling, i.e. peak periods of 2–3 hours, time switching is generally more sensitive in these data than mode switching. However, the context of the modelling and the extent to which relevant variables can be measured will strongly influence these results.  相似文献   

14.
Transport infrastructure is long-term and in appraisal it is necessary to value travel time savings for future years. This requires knowing how the value of time (VTT) will develop over time as incomes grow. This paper investigates if the cross-sectional income elasticity of the VTT is equal to inter-temporal income elasticity. The study is based on two identical stated choice experiments conducted with a 13 year interval. Results indicate that the relationship between income and the VTT in the cross-section has remained unchanged over time. As a consequence, the inter-temporal income elasticity of the VTT can be predicted based on cross-sectional income elasticity. However, the income elasticity of the VTT is not a constant but increases with income. For this reason, the average income elasticity of the VTT in the cross-sections has increased between the two survey years and can be expected to increase further over time.  相似文献   

15.
    
A driver is one of the main components in a transportation system that influences the effectiveness of any active demand management (ADM) strategies. As such, the understanding on driver behavior and their travel choice is crucial to ensure the successful implementation of ADM strategies in alleviating traffic congestion, especially in city centres. This study aims to investigate the impact of traffic information dissemination via traffic images on driver travel choice and decision. A relationship of driver travel choice with respect to their perceived congestion level is developed by an integrated framework of genetic algorithm–fuzzy logic, being a new attempt in driver behavior modeling. Results show that drivers consider changing their travel choice when the perceived congestion level is medium, in which changing departure time and diverting to alternative roads are two popular choices. If traffic congestion escalates further, drivers are likely to cancel their trip. Shifting to public transport system is the least likely choice for drivers in an auto-dependent city. These findings are important and useful to engineers as they are required to fully understand driver (user) sensitivity to traffic conditions so that relevant active travel demand management strategies could be implemented successfully. In addition, engineers could use the relationships established in this study to predict drivers’ response under various traffic conditions when carrying out modeling and impact studies.  相似文献   

16.
Travel time reliability is a fundamental factor in travel behavior. It represents the temporal uncertainty experienced by travelers in their movement between any two nodes in a network. The importance of the time reliability depends on the penalties incurred by the travelers. In road networks, travelers consider the existence of a trip travel time uncertainty in different choice situations (departure time, route, mode, and others). In this paper, a systematic review of the current state of research in travel time reliability, and more explicitly in the value of travel time reliability is presented. Moreover, a meta-analysis is performed in order to determine the reasons behind the discrepancy among the reliability estimates.  相似文献   

17.
Recent methodological advances in discrete choice analysis in combination with certain stated choice experiments have allowed researchers to check empirically the identification of the distribution of latent variables such as the value of travel time (VTT). Lack of identification is likely to be common and the consequences are severe. E.g., the Danish value of time study found the 15% right tail of the VTT distribution to be unidentified, making it impossible to estimate the mean VTT without resorting to strong assumptions with equally strong impact on the resulting estimate. This paper analyses data generated from a similar choice experiment undertaken in Sweden during 2007-2008 in which the range of trade-off values between time and money was significantly increased relative to the Danish experiment. The results show that this change allowed empirical identification of effectively the entire VTT distribution. In addition to informing the design of future choice experiments, the results are also of interest as a validity test of the stated choice methodology. Failure in identifying the right tail of the VTT would have made it difficult to maintain that respondents’ behaviour is consistent with utility maximisation in the sense intended by the experimenter.  相似文献   

18.
This paper addresses the problem of dynamic travel time (DTT) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DTT are provided. DTT is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.  相似文献   

19.
Unreliable travel times cause substantial costs to travelers. Nevertheless, they are often not taken into account in cost-benefit analyses (CBA), or only in very rough ways. This paper aims at providing simple rules to predict variability, based on travel time data from Dutch highways. Two different concepts of travel time variability are used, which differ in their assumptions on information availability to drivers. The first measure is based on the assumption that, for a given road link and given time of day, the expected travel time is constant across all working days (rough information: RI). In the second case, expected travel times are assumed to reflect day-specific factors such as weather conditions or weekdays (fine information: FI). For both definitions of variability, we find that the mean travel time is a good predictor. On average, longer delays are associated with higher variability. However, the derivative of variability with respect to delays is decreasing in delays. It can be shown that this result relates to differences in the relative shares of observed traffic ‘regimes’ (free-flow, congested, hyper-congested) in the mean delay. For most CBAs, no information on the relative shares of the traffic regimes is available. A non-linear model based on mean travel times can then be used as an approximation.  相似文献   

20.
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号