首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents a strategic de-confliction algorithm based on causal modeling developed under the STREAM project and launched under the umbrella of the Single European Sky ATM Research (SESAR) Program. The basic underlying concept makes use of the enriched information included in the Shared Business Trajectories (SBTs) of the flights prior to takeoff (or in the Reference Business Trajectories (RBTs) if the flight is airborne) to allocate conflict-free trajectories in a traffic planning phase that should lead to an actual conflict-free scenario in the flight execution phase in the absence of flight and/or network uncertainties. The proposed approach could decrease the workload of the air traffic controllers, thus improving the Air Traffic Management (ATM) capacity while meeting the maximum possible expectations of the Airspace Users’ requirements in terms of horizontal flight efficiency. The main modules of the implemented system are also presented in this paper; these modules are designed to enable the processing of thousands of trajectories within a few seconds or minutes and encompass a global network scope with a planning horizon of approximately 2–3 h. The causal model applied for network conflict resolution and flight routing allocation is analyzed to demonstrate how the emergent dynamics (i.e., domino effects) of local trajectory amendments can be efficiently explored to identify conflict-free Pareto-efficient network scenarios. Various performance indicators can be taken into account in the multi-criteria optimization process, thus offering to the network manager a flexible tool for fostering a collaborative planning process.  相似文献   

2.
A flow-based modeling approach is proposed to identify candidate airspace for high-density flow corridors. The input to the model is a set of projected user-preferred, wind optimal, and unconstrained 4D trajectories (4DTs). We compute Velocity Vector Fields (VVFs) in the 4D space-time and cluster the velocity vectors both in time and space to define flow of aircraft when they fly their preferred trajectories under high capacity conditions. A sliding time window is implemented to dynamically create and optimize corridors’ coordinates based on the changes in preferred trajectories. From this process we compute a NAS-wide corridor network that mimics the dynamics of user preferred trajectories. In operational setting, flights will have the option of joining a corridor that is closest to their optimal trajectory. Using NAS-wide simulation, we asses the benefit of corridor network by comparing efficiency gained by joining the corridor network against extra distance traveled to join the network. We show that much of the overall corridors benefit may be gained by creating very few corridors.  相似文献   

3.
This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to trajectory data without requiring the information on the underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic streams. Next, we introduce the notion of Cluster Representative Subsequence (CRS), which reflects dense road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis.  相似文献   

4.
Vehicular trajectories are widely used for car-following (CF) model calibration and validation, as they embody characteristics of individual driving behaviour (each trajectory reflects an individual driver). Previous studies have highlighted that the trajectories should contain all the major vehicular interactions (driving regimes) between the leader and the follower for reliable CF model calibration and validation. Based on Dynamic Time Warping and Bottom-Up algorithms, this paper develops a pattern recognition algorithm for vehicle trajectories (PRAVT) to objectively, accurately, and automatically differentiate different driving regimes in a trajectory and then select the most complete trajectories (i.e. trajectories containing a maximum number of regimes). PRAVT is rigorously tested using synthetic data and then applied to the NGSIM data. We have observed that the NGSIM data are dominated by the trajectories which contain only three regimes, namely acceleration, deceleration, and following, 77% of the trajectories lack the standstill regime, and no trajectory in the NGSIM data is complete. These findings’ impact on how to properly utilize NGSIM data can be profound. Given the extensive use of the NGSIM data in the traffic flow community, this paper also provides insights about the types of regimes contained in each trajectory of the NGSIM data.  相似文献   

5.
Congestion in Terminal Maneuvering Area (TMA) in hub airports is the main problem in Chinese air transportation. In this paper we propose a new system to integrated sequence and merge aircraft to parallel runways at Beijing Capital International Airport (BCIA). This system is based on the advanced avionics capabilities. Our methodology integrates a Multi-Level Point Merge (ML-PM) system, an economical descent approaches procedure, and a tailored heuristic algorithm to find a good, systematic, operationally-acceptable solution. First, Receding Horizontal Control (RHC) technique is applied to divide the entire 24 h of traffic into several sub-problems. Then in each sub-problem, it is optimized on given objectives (conflict, deviation from Estimated Time of Arrival (ETA) on the runway and makespan of the arrival flow). Four decision variables are designed to control the trajectory: the entry time, the entry speed, the turning time on the sequencing leg, and the landing runway allocation. Based on these variables, the real time trajectories are generated by the simulation module. Simulated Annealing (SA) algorithm is used to search the best solution for aircraft to execute. Finally, the conflict-free, least-delay, and user-preferred trajectories from the entry point of TMA to the landing runway are defined. Numerical results show that our optimization system has very stable de-conflict performance to handle continuously dense arrivals in transition airspace. It can also provide the decision support to assist flow controllers to handle the asymmetric arrival flows on different runways with less fuel consumption, and to assist tactical controllers to easily re-sequence aircraft with more relaxed position shifting. Moreover, our system can provide the fuel consumption prediction, and runway assignment information to assist airport and airlines managers for optimal decision making. Theoretically, it realizes an automated, cooperative and green control of routine arrival flows. Although the methodology defined here is applied to the airport BCIA, it could also be applied to other airports in the world.  相似文献   

6.
7.
In this paper, an efficient trajectory planning system is proposed to solve the integration of arrivals and departures on parallel runways with a novel route network system. Our first effort is made in designing an advanced Point Merge (PM) route network named Multi-Level Point Merge (ML-PM) to meet the requirements of parallel runway operations. Then, more efforts are paid on finding a complete and efficient framework capable of dynamically modelling the integration of arrival and departure trajectories on parallel runways, modelling the conflict detection and resolution in presence of curved trajectory and radius-to-fix merging process. After that, a suitable mathematical optimization formulation is built up. Receding Horizon Control (RHC) and Simulated Annealing (SA) algorithms are proposed to search the near-optimal solution for the large scale trajectories in routine dense operations. Taking Beijing Capital International Airport (BCIA) as a study case, the experimental results show that our system shows good performances on the management of arrivals and departures. It can automatically solve all the potential conflicts in presence of dense traffic flows. With its unique ML-PM route network, it can realize a shorter flying time and a near-Continuous Descent Approach (CDA) descent for arrival aircraft, an economical climbing for departure aircraft, an easier runway allocation together with trajectory control solutions. It shows a good and dynamic sequencing efficiency in Terminal Manoeuvring Area (TMA). In mixed ML-PM mode, under tested conditions, our proposed system can increase throughput at BCIA around 26%, compared with baseline. The methodology defined here could be easily applied to airports worldwide.  相似文献   

8.
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study.  相似文献   

9.
This paper considers the problem of short to mid-term aircraft trajectory prediction, that is, the estimation of where an aircraft will be located over a 10–30 min time horizon. Such a problem is central in decision support tools, especially in conflict detection and resolution algorithms. It also appears when an air traffic controller observes traffic on the radar screen and tries to identify convergent aircraft, which may be in conflict in the near future. An innovative approach for aircraft trajectory prediction is presented in this paper. This approach is based on local linear functional regression that considers data preprocessing, localizing and solving linear regression using wavelet decomposition. This algorithm takes into account only past radar tracks, and does not use any physical or aeronautical parameters. This approach has been successfully applied to aircraft trajectories between several airports on the data set that is one year air traffic over France. The method is intrinsic and independent from airspace structure.  相似文献   

10.
The Traffic Alert and Collision Avoidance System (TCAS) is a world-wide accepted last-resort means of reducing the probability and frequency of mid-air collisions between aircraft. Unfortunately, it is widely known that in congested airspace, the use of the TCAS may actually lead to induced collisions. Therefore, further research regarding TCAS logic is required. In this paper, an encounter model is formalised to identify all of the potential collision scenarios that can be induced by a resolution advisory that was generated previously by the TCAS without considering the downstream consequences in the surrounding traffic. The existing encounter models focus on checking and validating the potential collisions between trajectories of a specific scenario. In contrast, the innovative approach described in this paper concentrates on quantitative analysis of the different induced collision scenarios that could be reached for a given initial trajectory and a rough specification of the surrounding traffic. This approach provides valuable information at the operational level. Furthermore, the proposed encounter model can be used as a test-bed to evaluate future TCAS logic changes to mitigate potential induced collisions in hot spot volumes. In addition, the encounter model is described by means of the coloured Petri net (CPN) formalism. The resulting state space provides a deep understanding of the cause-and-effect relationship that each TCAS action proposed to avoid an actual collision with a potential new collision in the surrounding traffic. Quantitative simulation results are conducted to validate the proposed encounter model, and the resulting collision scenarios are summarised as valuable information for future Air Traffic Management (ATM) systems.  相似文献   

11.
Brooker  Peter 《Transportation》2004,31(1):1-20
The object is to identify characteristics of feasible systems for UK – and European – Air Traffic Management (ATM) in the coming decades. ATM here covers Air Traffic Control (ATC) provision plus wider issues, such as airspace design. The analytical focus is on the financial decision-making processes and constraints that will act to shape this future system. R&D work into control workload and planning based on an "ATM core concept" are proposed as likely to offer the best way forward.  相似文献   

12.
The Air Traffic Management system is under a paradigm shift led by NextGen and SESAR. The new trajectory-based Concept of Operations is supported by performance-based trajectory predictors as major enablers. Currently, the performance of ground-based trajectory predictors is affected by diverse factors such as weather, lack of integration of operational information or aircraft performance uncertainty.Trajectory predictors could be enhanced by learning from historical data. Nowadays, data from the Air Traffic Management system may be exploited to understand to what extent Air Traffic Control actions impact on the vertical profile of flight trajectories.This paper analyses the impact of diverse operational factors on the vertical profile of flight trajectories. Firstly, Multilevel Linear Models are adopted to conduct a prior identification of these factors. Then, the information is exploited by trajectory predictors, where two types are used: point-mass trajectory predictors enhanced by learning the thrust law depending on those factors; and trajectory predictors based on Artificial Neural Networks.Air Traffic Control vertical operational procedures do not constitute a main factor impacting on the vertical profile of flight trajectories, once the top of descent is established. Additionally, airspace flows and the flight level at the trajectory top of descent are relevant features to be considered when learning from historical data, enhancing the overall performance of the trajectory predictors for the descent phase.  相似文献   

13.
Abstract

The current air traffic system faces recurrent saturation problems. Numerous studies are dedicated to this issue, including the present research on a new dynamic regulation filter holding frequent trajectory optimisations in a real-time sliding horizon loop process. We consider a trajectory optimisation problem arising in this context, where a feasible four-dimensional (4D) trajectory is to be built and assigned to each regulated flight to suppress sector overloads while minimising the cost of the chosen policy. We model this problem with a mixed integer linear programme and solve it with a branch-and-price approach. The pricing sub-problem looks for feasible trajectories in a dynamic three-dimensional (3D) network and is solved with a specific algorithm based on shortest path labelling algorithms and on dynamic programming. Each algorithm is tested on real-world data corresponding to a complete traffic day in the European air traffic system; experimental results, including computing times measurement, validate the solution process.  相似文献   

14.
To mitigate airport congestion caused by increasing air traffic demand, the trajectory‐based surface operations concept has been proposed to improve surface movement efficiency while maintaining safety. It utilizes decision support tools to provide optimized time‐based trajectories for each aircraft and uses automation systems to guide surface movements and monitor their conformance with assigned trajectories. Whether the time‐based trajectories can be effectively followed so that the expected benefits can be guaranteed depends firstly on whether these trajectories are realistic. So, this paper first deals with the modeling biases of the network model typically used for taxi trajectory planning via refined taxiway modeling. Then it presents a zone control‐based dynamic routing and timing algorithm upon the refined taxiway model to find the shortest time taxi route and timings for an aircraft. Finally, the presented algorithm is integrated with a sequential planning framework to continuously decide taxi routes and timings. Experimental results demonstrate that the solution time for an aircraft can be steadily around a few milliseconds with timely cleaning of expired time windows, showing potential for real‐time decision support applications. The results also show the advantages of the proposed methodology over existing approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A key limitation when accommodating the continuing air traffic growth is the fixed airspace structure including sector boundaries. The geometry of sectors has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade. Dynamic Airspace Sectorization is a concept where the airspace is redesigned dynamically to accommodate changing traffic demands. Various methods have been proposed to dynamically partition the airspace to accommodate the traffic growth while satisfying other sector constraints and efficiency metrics. However, these approaches suffer from several operational drawbacks, and their computational complexity increases fast as the airspace size and traffic volume increase. In this paper, we evaluate and identify the gaps in existing 3D sectorization methods, and propose an improved Agent Based Model (iABM) to address these gaps. We also propose three additional models using KD-Tree, Bisection and Voronoi Diagrams in 3D, to partition the airspace to satisfy the convexity constraint and reduce computational cost. We then augment these methods with a multi-objective optimization approach that uses four objectives: minimizing the variance of controller workload across the sectors, maximizing the average sector flight time, and minimizing the distance between sector boundaries and the traffic flow crossing points. Experimental results show that iABM has the best performance on workload balancing, but it is restrictive when it comes to the convexity constraint. Bisection- and Voronoi Diagram-based models perform worse than iABM on workload balancing but better on average sector flight time, and they can satisfy the convexity constraint. The KD-tree-based model has a lower computational cost, but with a poor performance on the given objectives.  相似文献   

16.
Today’s air traffic operations follow the paradigm of ‘flow follows structure’, which already limits the operational efficiency and punctuality of current air traffic movements. Therefore, we introduce the dynamic airspace sectorisation and consequently change this paradigm to the more appropriate approach of ‘structure follows flow’. The dynamic airspace sectorisation allows an efficient allocation of scarce resources considering operational, economic and ecological constraints in both nominal and variable air traffic conditions. Our approach clusters traffic patterns and uses evolutionary algorithms for optimisation of the airspace, focusing on high capacity utilisation through flexible use of airspace, appropriate distribution of task load for air traffic controllers and fast adaptation to changed operational constraints. We thereby offer a solution for handling non-convex airspace boundaries and provide a proof of concept using current operational airspace structures and enabling a flight-centric air traffic management. We are confident that our developed dynamic airspace sectorisation significantly contributes to the challenges of future airspace by providing appropriate structures for future 4D aircraft trajectories taking into account various operational aspects of air traffic such as temporally restricted areas, limited capacities, zones of convective weather or urban air mobility. Dynamic sectorisation is a key enabling technology in the achievement of the ambitious goals of Single European Sky and Flightpath 2050 through a reduction in coordination efforts, efficient resource allocation, reduced aircraft emissions, fewer detours, and minimisation of air traffic delays.  相似文献   

17.
This paper presents a model that systematically integrates, for the first time, the association between a region's aviation near-midair collision risk and its traffic levels, its type and amount of air traffic control, and the complexity of its airspace. The model incorporates the tight interrelatedness (and correlation) between traffic, airspace complexity, and air traffic controller staffing. An estimation of the model using cross-sectional data on 143 U.S. airports in 1985 indicates that the frequency of reported near-midair collisions (NMACs) is positively associated with regional traffic and airspace complexity, despite the fact that busier, more complex regions generally have more air traffic controllers. Also, in regions governed by “terminal radar service areas” (TRSAs), the reported near-midair collisions are positively associated with the presence of more satellite airports than would be expected on the basis of traffic alone. Finally, deviations from controller staffing levels that would be expected on the basis of traffic and airspace complexity alone are significantly associated with variations in reported NMACs in terminal control areas but not in terminal radar service areas.  相似文献   

18.
This paper shows the relationship between flow, generalized origin–destination (OD), and alternative route flow from a set of ordinal graph trajectories. In contrast to traffic assignment methods that employ OD matrix to produce flow matrix, we use ordinal trajectory on a network graph as input and produce both the generalized OD matrix and the flow matrix, with the alternative and substitute route flow matrices as additional outputs. By using linear algebra‐like operations on matrix sets, the relationship between network utilization (in terms of flow, generalized OD, alternative route flow, and desire line) and network structure (in terms of distance matrix and adjacency matrix) are derived. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The cooperative energy-efficient trajectory planning for multiple high-speed train movements is considered in this paper. We model all the high-speed trains as the agents that can communicate with others and propose a local trajectory planning control model using the Model Predictive Control (MPC) theory. After that we design an online distributed cooperative optimization algorithm for multiple train trajectories planning, under which each train agent can regulate the trajectory planning procedure to save energy using redundancy trip time through tuning ACO’s heuristic information parameter. Compared to the existing literature, the vital distinctions of our work lies not only on the online cooperative trajectory planning but also on the distributed mechanism for multiple high-speed trains. Experimental studies are given to illustrate the effectiveness of the proposed methods with the practical operational data of Wuhan-Guangzhou High-speed Railway in China.  相似文献   

20.
Road designers assume that drivers will follow the road alignment with trajectories centred in the lane, and move at the design speed parallel to the road centreline (i.e., the horizontal alignment). Therefore, they assume that if the horizontal alignment indicates the “designed trajectory”, the driving path indicates the “operating trajectory”. However, at present, they do not have the necessary tools to measure the relationship between the designed alignment and possible vehicle trajectories.The paper has two objectives: (a) to develop an understanding of the root causes of differences between road alignment and vehicle trajectories; and (b) to define and calibrate a model that estimates the local curvature of trajectories on the basis of the designed horizontal alignment.The two objectives were pursued by carrying out a naturalistic survey using vehicles equipped with high precision GPS in real-time kinematics (RTK) mode driven by test drivers on road sections of known geometric characteristics. The results provide an insight into the effects of road geometrics on driver behaviour, thus anticipating possible driving errors or unexpected/undesired behaviours, information which can then be used to correct possible inconsistencies when making decisions at the design stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号