共查询到20条相似文献,搜索用时 15 毫秒
1.
The aviation community is actively investigating initiatives to reduce aircraft fuel consumption from surface operations, as surface management strategies may face fewer implementation barriers compared with en route strategies. One fuel-saving initiative for the air transportation system is the possibility of holding aircraft at the gate, or the spot, until the point at which they can taxi unimpeded to the departure runway. The extent to which gate holding strategies have financial and environmental benefits hinges on the quantity of fuel that is consumed during surface operations. A pilot of an aircraft may execute the taxi procedure on a single engine or utilize different engine thrust rates during taxi because of a delay. In the following study, we use airline fuel consumption data to estimate aircraft taxi fuel consumption rates during the “unimpeded” and “delayed” portions of taxi time. We find that the fuel consumption attributed to a minute of taxi-out delay is less than that attributed to minute of unimpeded taxi time; for some aircraft types, the fuel consumption rate for a minute of taxi delay is half of that for unimpeded taxi. It is therefore not appropriate, even for rough calculations, to apply nominal taxi fuel consumption rates to convert delayed taxi-out time into fuel burn. On average we find that eliminating taxi delay would reduce overall flight fuel consumption by about 1%. When we consider the savings on an airport-by-airport basis, we find that for some airports the potential reduction from reducing taxi delay is as much as 2%. 相似文献
2.
This paper considers the problem of short to mid-term aircraft trajectory prediction, that is, the estimation of where an aircraft will be located over a 10–30 min time horizon. Such a problem is central in decision support tools, especially in conflict detection and resolution algorithms. It also appears when an air traffic controller observes traffic on the radar screen and tries to identify convergent aircraft, which may be in conflict in the near future. An innovative approach for aircraft trajectory prediction is presented in this paper. This approach is based on local linear functional regression that considers data preprocessing, localizing and solving linear regression using wavelet decomposition. This algorithm takes into account only past radar tracks, and does not use any physical or aeronautical parameters. This approach has been successfully applied to aircraft trajectories between several airports on the data set that is one year air traffic over France. The method is intrinsic and independent from airspace structure. 相似文献
3.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year. 相似文献
4.
This paper proposes a novel short/medium-term prediction method for aviation emissions distribution in en route airspace. An en route traffic demand model characterizing both the dynamics and the fluctuation of the actual traffic demand is developed, based on which the variation and the uncertainty of the short/medium-term traffic growth are predicted. Building on the demand forecast the Boeing Fuel Flow Method 2 is applied to estimate the fuel consumption and the resulting aviation emissions in the en route airspace. Based on the traffic demand prediction and the en route emissions estimation, an aviation emissions prediction model is built, which can be used to forecast the generation of en route emissions with uncertainty limits. The developed method is applied to a real data set from Hefei Area Control Center for the en route emission prediction in the next 5 years, with time granularities of both months and years. To validate the uncertainty limits associated with the emission prediction, this paper also presents the prediction results based on future traffic demand derived from the regression model widely adopted by FAA and Eurocontrol. The analysis of the case study shows that the proposed method can characterize well the dynamics and the fluctuation of the en route emissions, thereby providing satisfactory prediction results with appropriate uncertainty limits. The prediction results show a gradual growth at an average annual rate of 7.74%, and the monthly prediction results reveal distinct fluctuation patterns in the growth. 相似文献
5.
In this paper, we propose an extended car-following model to study the influences of the driver’s bounded rationality on his/her micro driving behavior, and the fuel consumption, CO, HC and NOX of each vehicle under two typical cases, where Case I is the starting process and Case II is the evolution process of a small perturbation. The numerical results indicate that considering the driver’s bounded rationality will reduce his/her speed during the starting process and improve the stability of the traffic flow during the evolution of the small perturbation, and reduce the total fuel consumption, CO, HC and NOX of each vehicle under the above two cases. 相似文献
6.
Brian Ratcliffe 《运输规划与技术》2013,36(4):289-291
TRANSPORTATION ENGINEERING, by Jason C. Yu. Elsevier North Holland, New York, 1982. 462 pp. ($32.50 U.S. and Canada, $55.75 elsewhere) FUNDAMENTALS OF TRAFFIC ENGINEERING, 10th Edition by W. S. Hombur‐ger and James H. Kell. University of California, Institute of Transportation Studies, 1981. DECISION THEORY AND INCOMPLETE KNOWLEDGE, by Z. W. Kmietowicz and A. D. Pearman. Gower Publishing Co., Aldershot, England, pp. 121. (£12.50) URBAN PUBLIC TRANSPORTATION, by Vukan R. Vuchic. Prentice Hall Inc., Englewood Cliffs, N.J. 1981. 673 pp. (£27.20) AUTOS, TRANSIT AND CITIES, by John R. Meyer and Jose A. Gomez‐Ibanez. Harvard University Press, Cambridge Mass., 1981. 359 pp. ($20.00) PUBLICITY AND CUSTOMER RELATIONS IN TRANSPORT MANAGEMENT, by David W. Wragg. Gower. 144 pp. (£12.50 case) 相似文献
7.
Significant effects of traffic congestion include the cost associated with extra travel time, fuel consumption, and gas emissions. This paper develops a mathematical function to quantify the monetary impact of transition designs between signal timing plans on users and the environment. This function offers an approach to reduce problems such as excessive travel time, pollution emissions and fuel consumption. The proposed social cost function is evaluated for various transition plans to assess the impact of the number of steps required to adjust signal timing. The relationships between delay, fuel consumption and gas emissions and the number of steps needed to achieve the transition are also analysed. 相似文献
8.
This study aims (i) to analyze theoretical properties of a recently proposed describing-function (DF) based approach (Li and Ouyang, 2011; Li et al., 2012) for traffic oscillation quantification, (ii) to adapt it for estimating fuel consumption and emission from traffic oscillation and (iii) to explore vehicle control strategies of smoothing traffic with advanced technologies. The DF approach was developed to predict traffic oscillation propagation across a platoon of vehicles following each other by a nonlinear car-following law with only the leading vehicle’s input. We first simplify the DF approach and prove a set of properties (e.g., existence and uniqueness of its solution) that assure its prediction is always consistent with observed traffic oscillation patterns. Then we integrate the DF approach with existing estimation models of fuel consumption and emission to analytically predict environmental impacts (i.e., unit-distance fuel consumption and emission) from traffic oscillation. The prediction results by the DF approach are validated with both computer simulation and field measurements. Further, we explore how to utilize advantageous features of emerging sensing, communication and control technologies, such as fast response and information sharing, to smooth traffic oscillation and reduce its environmental impacts. We extend the studied car-following law to incorporate these features and apply the DF approach to demonstrate how these features can help dampen the growth of oscillation and environmental impact measurements. For information sharing, we convert the corresponding extended car-following law into a new fixed point problem and propose a simple bisecting based algorithm to efficiently solve it. Numerical experiments show that these new car-following control strategies can effectively suppress development of oscillation amplitude and consequently mitigate fuel consumption and emission. 相似文献
9.
Passenger demand for air transportation is expected to continue growing into the future. The increase in operations will undoubtedly lead to an escalation in harmful carbon dioxide emissions, an adverse effect that governing bodies have been striving to mitigate. The International Air Transport Association has set aggressive environmental targets for the global aviation industry. This paper investigates the achievability of those targets in the US using a top-down partial equilibrium model of the aviation system complemented with a previously developed fleet turnover procedure. Three ‘enablers’ are considered: aircraft technologies, operational improvements and sustainable biofuels. To account for sources of uncertainty, Monte Carlo simulations are conducted to run a multitude of scenarios. It was found that the likelihood of meeting all targets is extremely low (0.3%) for the expected demand growth rates in the US. Results show that biofuels have the most impact on system CO2 emissions, responsible for an average 64% of the total savings by 2050 (with aircraft technologies and operational improvements responsible for 31% and 5%, respectively). However, this impact is associated with high uncertainty and very dependent on both biofuel type and availability. 相似文献
10.
Connected Vehicles (CV) equipped with a Speed Advisory System (SAS) can obtain and utilize upcoming traffic signal information to manage their speed in advance, lower fuel consumption, and improve ride comfort by reducing idling at red lights. In this paper, a SAS for pre-timed traffic signals is proposed and the fuel minimal driving strategy is obtained as an analytical solution to a fuel consumption minimization problem. We show that the minimal fuel driving strategy may go against intuition of some people; in that it alternates between periods of maximum acceleration, engine shut down, and sometimes constant speed, known in optimal control as bang-singular-bang control. After presenting this analytical solution to the fuel minimization problem, we employ a sub-optimal solution such that drivability is not sacrificed and show fuel economy still improves significantly. Moreover this paper evaluates the influence of vehicles with SAS on the entire arterial traffic in micro-simulations. The results show that SAS-equipped vehicles not only improve their own fuel economy, but also benefit other conventional vehicles and the fleet fuel consumption decreases with the increment of percentage of SAS-equipped vehicles. We show that this improvement in fuel economy is achieved with a little compromise in average traffic flow and travel time. 相似文献
11.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs. 相似文献
12.
Fuel consumption models have been widely used to predict fuel consumption and evaluate new vehicle technologies. However, due to the uncertainty and high nonlinearity of fuel systems, it is difficult to develop an accurate fuel consumption model for real-time calculations. Additionally, whether the developed fuel consumption models are suitable for eco-routing and eco-driving systems is unknown. To address these issues, a systematic review of fuel consumption models and the factors that influence fuel economy is presented. First, the primary factors that affect fuel economy, including travel-related, weather-related, vehicle-related, roadway-related, traffic-related, and driver-related factors, are discussed. Then, state-of-the-art fuel consumption models developed after 2000 are summarized and classified into three broad types based on transparency, i.e., white-box, grey-box and black-box models. Consequently, the limitations and potential possibilities of fuel consumption modelling are highlighted in this review. 相似文献
13.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft. 相似文献
14.
The paper examines the effects of coordinated traffic lights on CO and C6H6 roadside concentrations in an urban area of Palermo in Southern Italy. Traffic loop detectors and one pollution-monitoring are used to collect data for use in DRACULA traffic microsimulator software. CO and C6H6 roadside concentrations associated with varying cycle and offset times of the coordinated traffic lights are estimated using a neural network. Two functions were set up describing the relations of pollutant concentrations in term of cycle and offset time. 相似文献
15.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels. 相似文献
16.
This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer’s choice of vehicle size. A vehicle’s size is measured by its “footprint”, the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size, thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle’s footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles. 相似文献
17.
This article presents a fuel consumption model, SEFUM (Semi Empirical Fuel Use Modeling), and its comparison with three models from the literature on a 600 km experimental database. This model is easy to calibrate with only a few required parameters that are provided by car manufacturers. The test database has been built from 21 drivers who drove in two conditions (normal and ecodriving) on a 15 km trip. For the model evaluation, three indicators have been selected: instantaneous fuel use root mean square error, cumulated error and computation time in order to evaluate the accuracy both in cumulated and instantaneous fuel use and to estimate computation time of each model. Results tend to prove that the model is able to compute rapidly (maximum of 1500 simulated kilometers under Matlab) in comparison to all other models while ensuring a high accuracy and precision for cumulated and instantaneous fuel use. 相似文献
18.
This paper presents a railroad energy efficiency model used to estimate the fuel economies for classes of trains transporting various commodities. Comparable procedures are used to estimate truck and waterway fuel consumption. The results show that coal unit trains are 4.5–5.0 times more energy efficient than movements in the largest trucks allowed in the eastern and western regions of the US, unit grain train movements in the central US are 4.6 times more fuel efficient, soda ash unit train and non-unit train shipments are 4.9 and 3.2 times more efficient, and ethanol unit train and non-unit train movements are 4.8 and 3.0 times more efficient. In terms of barge traffic, coal unit train and non-unit train are 1.3 and 0.9 times as energy efficient in the eastern US, grain unit train and non-unit train movements are 1.7 and 1.0 times more efficient from Minneapolis to the Gulf of Mexico, and grain unit train and non-unit train movements are 1.0 and 0.7 times more fuel efficient from the Upper Ohio River to the Gulf of Mexico. 相似文献
19.
We examine the various forces influencing the development and uptake of environmentally beneficial technical changes, focusing on airline technology. Within this context, we consider not only the nature of competition within the final market in which aircraft, an intermediate product, are sold, but also that of the product market itself, the commercial airline industry. The reasons for the gradual reduction in CO2 per seat per aircraft movement in aircraft design are examined in terms of the real costs of aviation fuel, changes in the nature of the supply industry, the movement towards carbon cap-trade policies, and endogenous technical progress in the technology of the industry. The latter being taken as an empirical proxy for the role market forms play in influencing the fuel efficiency of the types of aircraft used. The results support the existence of these latter forces on the demand for aircraft types, allowing for other influences that affect aircraft technology. 相似文献
20.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios. 相似文献