首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In driving simulation, a scenario includes definitions of the road environment, the traffic situation, simulated vehicles’ interactions with the participant’s vehicle and measurements that need to be collected. The scenarios need to be designed in such a way that the research questions to be studied can be answered, which commonly imply exposing the participant for a couple of predefined specific situations that has to be both realistic and repeatable. This article presents an integrated algorithm based on Dynamic Actor Preparation and Automated Action Planning to control autonomous simulated vehicles in the simulation in order to generate predefined situations. This algorithm is thus able to plan driving actions for autonomous vehicles based on specific tasks with relevant contextual information as well as handling longitudinal transportation of simulated vehicles based on the contextual information in an automated manner. The conducted experiment shows that the algorithm is able to guarantee repeatability under autonomous traffic flow. The presented algorithm can benefit not only the driving simulation community, but also relevant areas, such as autonomous vehicle and in-vehicle device design by providing them with an algorithm for target pursue and driving task accomplishment, which can be used to design a human-vehicle cooperation system in the coming era of autonomous driving.  相似文献   

2.
Autonomous vehicles can be used to create realistic simulations of surrounding vehicles in driving simulators. However, the use of autonomous vehicles makes it difficult to ensure reproducibility between subjects. In this paper, an effort is made to solve the problem by combining autonomous vehicles and controlled events. A controlled event can be compared to a theatre play. The aim is to achieve the same initial play conditions for each subject, which can be problematic since the traffic situation around the subject will be dependent upon each subject’s actions while driving in autonomous traffic. This paper presents an algorithm that achieves the transition from autonomous traffic to a predefined start condition for a play. The algorithm has been tested in the Swedish National Road and Transport Research Institute (VTI) driving simulator III with promising results. In most of the cases we examined the algorithm could reconstruct the specified start condition and conduct the transition from autonomous to controlled mode in a inconspicuous way. Some problems were observed regarding moving unwanted vehicles away from the closest area around the simulator vehicle, and this part of the algorithm has to be enhanced. The experiment also showed that the subjects drove faster in the presence of controlled everyday life traffic normally used in the VTI driving simulator than in autonomous traffic.  相似文献   

3.
    
This paper first describes the process of integrating two distinct transportation simulation platforms, Traffic Simulation models and Driving Simulators, so as to broaden the range of applications for which either type of simulator is applicable. To integrate the two distinct simulation platforms, several technical challenges needed to be overcome including reconciling differences in update frequency, coordinate systems, and the fidelity levels of the vehicle dynamics models and graphical rendering requirements of the two simulators. Following the successful integration, the integrated simulator was validated by having several human subjects drive a 2.5 mile long segment of a signalized arterial in both the virtual environment of the integrated simulator, and in the real-world during the evening “rush hour”. Several aspects of driving behavior were then compared between the human subjects’ driving in the “virtual” and the real world. The comparisons revealed generally similar behavior, in terms of average corridor-level travel time, deceleration/acceleration patterns, lane-changing behavior, as well as energy consumption and emissions production. The paper concludes by suggesting possible extensions of the developed prototype which the researchers are currently pursuing, including integration with a computer networking simulator, to facilitate Connected Vehicle (CV) and Vehicle Ad-hoc Network (VANET) related studies, and a multiple participant component that allows several human drivers to interact simultaneously within the integrated simulator.  相似文献   

4.
The drive to reduce fuel consumption and greenhouse gas emissions is one shared by both businesses and governments. Although many businesses in the European Union undertake interventions, such as driver training, there is relatively little research which has tested the efficacy of this approach and that which does exist has methodological limitations. One emerging technology employed to deliver eco-driving training is driver training using a simulator. The present study investigated whether bus drivers trained in eco-driving techniques were able to implement this learning in a simulator and whether this training would also transfer into the workplace. A total of 29 bus drivers attended an all-day eco-driving course and their driving was tested using a simulator both before and after the course. A further 18 bus drivers comprised the control group, and they attended first aid courses as well as completing the same simulator drives (before-after training). The bus drivers who were given the eco-driving training significantly improved fuel economy figures in the simulator, while there was no change in fuel economy for the control group. Actual fuel economy figures were also provided by the bus companies immediately before the training, immediately after the training and six months after the training. As expected there were no significant changes in fuel economy for the control group. However, fuel economy for the treatment group improved significantly immediately after the eco-driving training (11.6%) and this improvement was even larger six months after the training (16.9%). This study shows that simulator-based training in eco-driving techniques has the potential to significantly reduce fuel consumption and greenhouse gas emissions in the road transport sector.  相似文献   

5.
    
This research developed an eco-driving feedback system based on a driving simulator to support eco-driving training. This support system could provide both dynamic and static feedback to improve drivers’ eco-driving behavior. In the process of driving, drivers could get voice prompts (e.g., please avoid accelerating rapidly) once non-eco-driving behavior appeared, and also could see the real-time CO2 emissions curves. After driving, drivers could receive an eco-driving evaluation report including their fuel consumption rank, potential of fuel saving and driving advice corresponding to their driving behavior. In this support system, five items of non-eco-driving behavior (i.e., quick accelerate, rapid decelerate, engine revolutions at a high level, too fast or unstable speed on freeways and idling for a longer time) were defined and could be detected. To validate this support system’s effectiveness in reducing fuel consumption and emissions, 22 participants were recruited and three driving tests were conducted, first without using the support system, then static feedback and then dynamic feedback utilized respectively. A reduction of 5.37% for CO2 emissions and 5.45% for fuel consumption was obtained. The results indicated that the developed eco-driving support system was an effective training tool to improve drivers’ eco-driving behavior in reducing emissions and fuel consumption.  相似文献   

6.
徐晓磊 《现代隧道技术》2012,(3):186-192,197
盾构设计的合理性和科学性是盾构设备安全可靠和高效施工的基础。文章通过对新加坡C902地铁隧道工程项目6 640 mm铰接式土压平衡复合盾构的技术研究和工程应用,介绍其设计条件及主要技术参数,着重对该盾构及其相关设备组成部分进行了详细论述。此复合盾构在系统优化及设计理念的先进性上比原先的盾构有很大的提高,尤其是增加了很多人性化的设计。  相似文献   

7.
    
Accurately estimating driving styles is crucial to designing useful driver assistance systems and vehicle control systems for autonomous driving that match how people drive. This paper presents a novel way to identify driving style not in terms of the durations or frequencies of individual maneuver states, but rather the transition patterns between them to see how they are interrelated. Driving behavior in highway traffic was categorized into 12 maneuver states, based on which 144 (12 × 12) maneuver transition probabilities were obtained. A conditional likelihood maximization method was employed to extract typical maneuver transition patterns that could represent driving style strategies, from the 144 probabilities. Random forest algorithm was adopted to classify driving styles using the selected features. Results showed that transitions concerning five maneuver states – free driving, approaching, near following, constrained left and right lane changes – could be used to classify driving style reliably. Comparisons with traditional methods were presented and discussed in detail to show that transition probabilities between maneuvers were better at predicting driving style than traditional maneuver frequencies in behavioral analysis.  相似文献   

8.
This paper develops a systematic and practical construction methodology of a representative urban driving cycle for electric vehicles, taking Xi’an as a case study. The methodology tackles four major tasks: test route selection, vehicle operation data collection, data processing, and driving cycle construction. A qualitative and quantitative comprehensive analysis method is proposed based on a sampling survey and an analytic hierarchy process to design test routes. A hybrid method using a chase car and on-board measurement techniques is employed to collect data. For data processing, the principal component analysis algorithm is used to reduce the dimensions of motion characteristic parameters, and the K-means and support vector machine hybrid algorithm is used to classify the driving segments. The proposed driving cycle construction method is based on the Markov and Monte Carlo simulation method. In this study, relative error, performance value, and speed-acceleration probability distribution are used as decision criteria for selecting the most representative driving cycle. Finally, characteristic parameters, driving range, and energy consumption are compared under different driving cycles.  相似文献   

9.
    
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

10.
    
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   

11.
利用流体力学理论,结合目前国内外最新的两相流理论和实验研究成果,在描述气液两相管流水力计算、热力计算和流型判断的数学物理模型的基础上,研制出适用于海洋、沙漠、丘陵地区,原油与伴生气、凝析天然气与凝液混合输送工艺的一套新的计算模拟软件TFTCS.对TFTCS的结构、功能、适用范围作了介绍,用该软件对某湿天然气管线进行了模拟计算,同管线生产数据进行了对比,并与国外同类软件PIPEPHASE进行了对比验算。实际应用表明,该软件功能完善、操作方便、计算结果可靠,能满足油气混输管线的设计计算和生产管理的需要。  相似文献   

12.
Whilst driving is inherently a safety–critical task, awareness of fuel-efficient driving techniques has gained popularity in both the public and commercial domains. Green driving, whether motivated by financial or environmental savings, has the potential to reduce the production of greenhouse gases by a significant amount. This paper focusses on the interaction between the driver and their vehicle – what type of eco-driving information is easy to use and learn whilst not compromising safety. A simulator study evaluated both visual and haptic eco-driving feedback systems in the context of hill driving. The ability of drivers to accurately follow the advice, as well as their propensity to prioritise it over safe driving was investigated. We found that any type of eco-driving advice improved performance and whilst continuous real-time visual feedback proved to be the most effective, this modality obviously reduces attention to the forward view and increases subjective workload. On the other hand, the haptic force system had little effect on reported workload, but was less effective that the visual system. A compromise may be a hybrid system that adapts to drivers’ performance on an on-going basis.  相似文献   

13.
在盾构法隧道施工过程中,合理设置盾构机运行参数,确保盾构机能够按照一定速度掘进,是整个工程流程控制中非常重要的工作。针对现有的盾构参数预测方法缺少对数据系统性的分析和处理,导致预测效果不及预期的情况,文章提出了一整套新的数据预处理流程。该流程分为数据分析和数据处理两个阶段,第一阶段通过主成分分析、皮尔森相关性系数分析进行特征筛选,第二阶段通过插值平滑、卷积平滑进行数据平滑。经过这两个阶段的原始数据处理后,能够在盾构产生的海量数据中提取出特征更明显、价值更高的数据。通过选取真实盾构机数据集进行对比实验,结果表明,所提出的数据预处理流程,能够有效提高盾构机参数预测模型的准确率。  相似文献   

14.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

15.
16.
    
Driving cycles are an important input for state-of-the-art vehicle emission models. Development of a driving cycle requires second-by-second vehicle speed for a representative set of vehicles. Current standard driving cycles cannot reflect or forecast changes in traffic conditions. This paper introduces a method to develop representative driving cycles using simulated data from a calibrated microscopic traffic simulation model of the Toronto Waterfront Area. The simulation model is calibrated to reflect road counts, link speeds, and accelerations using a multi-objective genetic algorithm. The simulation is validated by comparing simulated vs. observed passenger freeway cycles. The simulation method is applied to develop AM peak hour driving cycles for light, medium and heavy duty trucks. The demonstration reveals differences in speed, acceleration, and driver aggressiveness between driving cycles for different vehicle types. These driving cycles are compared against a range of available driving cycles, showing different traffic conditions and driving behaviors, and suggesting a need for city-specific driving cycles. Emissions from the simulated driving cycles are also compared with EPA’s Heavy Duty Urban Dynamometer Driving Schedule showing higher emission factors for the Toronto Waterfront cycles.  相似文献   

17.
Imposing driving restrictions is becoming increasingly popular as a policy intended to control urban air pollution. Existing studies on this topic offer highly mixed observations, and each study tends to focus on only one city. In this paper, we used 11 Chinese cities with driving restrictions as the treatment group, and compared them to other cities that did not implement the policy. Based on a propensity score matching and difference-in-difference analysis, we found no evidence of a decrease in PM10 concentrations in cities after they implemented driving restrictions. This finding may be attributed to an increase in the number of cars in these cities after implementing driving restrictions, but we also found no evidence of an improvement in air quality for a given number of cars after implementation of the policies.  相似文献   

18.
驾驶车辆时使用手机通话或发短信会损害驾驶表现,但是,很少研究直接比较使用语音消息与文字消息的干扰作用。明确不同次任务对驾驶的影响是立法、车载设备设计和驾驶安全培训的基础。本文以驾驶模拟器与眼动仪为试验平台,比较了语音消息和文字消息对驾驶表现的影响。结果表明,语音消息和文字消息均会导致速度平均值、加速度和跟车距离发生更多变化,降低行车安全性。相较于文字消息,语音消息条件下车辆可以保持较好的横向稳定性与车道保持能力。在视觉行为方面,文字消息和语音消息均会减少驾驶员前方道路注视次数及注视时间,降低驾驶员道路交通信息的获取能力。  相似文献   

19.
    
The fact that electric vehicles (EVs) are characterized by relatively short driving range not only signifies the importance of routing applications to compute energy efficient or optimal paths, but also underlines the necessity for realistic simulation models to estimate the energy consumption of EVs. To this end, the present paper introduces an accurate yet computationally efficient energy consumption model for EVs, based on generic high-level specifications and technical characteristics. The proposed model employs a dynamic approach to simulate the energy recuperation capability of the EV and takes into account motor overload conditions to represent the vehicle performance over highly demanding route sections. To validate the simulation model developed in this work, its output over nine typical driving cycles is compared to that of the Future Automotive Systems Technology Simulator (FASTSim), which is a simulation tool tested on the basis of real-world data from existing vehicles. The validation results show that the mean absolute error (MAE) of cumulative energy consumption is less than 45 W h on average, while the computation time to perform each driving cycle is of the order of tens of milliseconds, indicating that the developed model strikes a reasonable balance between efficacy of representation and computational efficiency. Comprehensive simulation results are presented in order to exemplify the key features of the model and analyze its output under specific highly aggressive driving cycles for road gradients ranging from −6% to 6%, in support of its usability as a practical solution for estimating the energy consumption in EV routing applications.  相似文献   

20.
    
This paper analyses the driving cycles of a fleet of vehicles with predetermined urban itineraries. Most driving cycles developed for such type of vehicles do not properly address variability among itineraries. Here we develop a polygonal driving cycle that assesses each group of related routes, based on microscopic parameters. It measures the kinematic cycles of the routes traveled by the vehicle fleet, segments cycles into micro-cycles, and characterizes their properties, groups them into clusters with homogeneous kinematic characteristics within their specific micro-cycles, and constructs a standard cycle for each cluster. The process is used to study public bus operations in Madrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号