首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This paper shows that a macroscopic fundamental diagram (MFD) relating average flow and average density must exist on any street with blocks of diverse widths and lengths, but no turns, even if all or some of the intersections are controlled by arbitrarily timed traffic signals. The timing patterns are assumed to be fixed in time. Exact analytical expressions in terms of a shortest path recipe are given, both, for the street’s capacity and its MFD. Approximate formulas that require little data are also given.For networks, the paper derives an upper bound for average flow conditional on average density, and then suggests conditions under which the bound should be tight; i.e., under which the bound is an approximate MFD. The MFD’s produced with this method for the central business districts of San Francisco (California) and Yokohama (Japan) are compared with those obtained experimentally in earlier publications.  相似文献   

2.
This paper considers modeling and control of uncertain Macroscopic Fundamental Diagram (MFD) systems for multiple-region networks. First, the nonlinear vehicle conservation equations based on MFD dynamics, presented in earlier publications, are transformed to linear equations with parameter uncertainties. The parameter uncertainties include the destination decomposition fractions, that are difficult to estimate in reality. Then, the uncertain linear model is utilized to design a robust feedback controller by an interpolation-based approach. This approach (i) guarantees robustness against all parameter uncertainties, (ii) handle control and state constraints, and (iii) present a computationally cheap solution. The main idea is to interpolate between (i) a stabilizing outer controller that respects the control and state constraints and (ii) an inner robustly stable controller designed by any method. The robust control is further challenged to deal with different relative locations of reference accumulation points on the MFD diagrams. Numerical results for a two-region system show that the uncertain linear model can replace the nonlinear model for modeling and control. Moreover, the robust control law is presented as implicit and explicit solutions, where in the implicit case one linear programming (LP) problem is solved at each time instant, while in the explicit case, the control law is shown as a piecewise affine function of state. Finally, a comparison between the interpolating controller and other controllers in the literature is carried out. The results demonstrate the performance advantages from applying the robust interpolating controller.  相似文献   

3.
A field experiment in Yokohama (Japan) revealed that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. It was observed that when the highly scattered plots of flow vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped along a well defined curve. Despite these and other recent findings for the existence of well-defined MFDs for urban areas, these MFDs should not be universally expected. In this paper we investigate what are the properties that a network should satisfy, so that an MFD with low scatter exists. We show that the spatial distribution of vehicle density in the network is one of the key components that affect the scatter of an MFD and its shape. We also propose an analytical derivation of the spatial distribution of congestion that considers correlation between adjacent links. We investigate the scatter of an MFD in terms of errors in the probability density function of spatial link occupancy and errors of individual links’ fundamental diagram (FD). Later, using real data from detectors for an urban arterial and a freeway network we validate the proposed derivations and we show that an MFD is not well defined in freeway networks as hysteresis effects are present. The datasets in this paper consist of flow and occupancy measures from 500 fixed sensors in the Yokohama downtown area in Japan and 600 loop detectors in the Twin Cities Metropolitan Area Freeway network in Minnesota, USA.  相似文献   

4.
Macroscopic fundamental diagrams (MFD) of traffic for some networks have been shown to have similar shape to those for single links. They have erroneously been used to help estimate the level of travel in congested networks. We argue that supply curves, which track vehicles in their passage through congested networks, are needed for this purpose, and that they differ from the performance curves generated from MFD. We use a microsimulation model, DRACULA and two networks, one synthesizing the network for Cambridge, England, and one of the city of York, England, to explore the nature of performance curves and supply curves under differing patterns of demand.We show that supply curves differ from performance curves once the onset of congestion is reached, and that the incorrect use of performance curves to estimate demand can thus seriously underestimate traffic levels, the costs of congestion, and the value of congestion relief measures. We also show that network aggregated supply curves are sensitive to the temporal distribution of demand and, potentially, to the spatial distribution of demand. The shape of the supply curve also differs between origin–destination movements within a given network.We argue that supply curves for higher levels of demand cannot be observed in normal traffic conditions, and specify ways in which they can be determined from microsimulation and, potentially, by extrapolating observed data. We discuss the implications of these findings for conventional modelling of network management policies, and for these policies themselves.  相似文献   

5.
ABSTRACT

This paper presents an overview of the recent developments in traffic flow modelling and analysis using macroscopic fundamental diagram (MFD) as well as their applications. In recent literature, various aggregated traffic models have been proposed and studied to analyse traffic flow while enhancing network efficiency. Many of these studies have focused on models based on MFD that describes the relationship between aggregated flow and aggregated density of transport networks. The analysis of MFD has been carried out based on experimental data collected from sensors and GPS, as well as simulation models. Several factors are found to influence the existence and shape of MFD, including traffic demand, network and signal settings, and route choices. As MFD can well express the traffic dynamics of large urban transport networks, it has been extensively applied to traffic studies, including the development of network-wide control strategies, network partitioning, performance evaluation, and road pricing. This work also presents future extensions and research directions for MFD-based traffic modelling and applications.  相似文献   

6.
Transport systems in real cities are complex with many modes of transport sharing and competing for limited road space. This work intends to understand how space distributions for modes and interactions among modes affect network traffic performance. While the connection between performance of transport systems and general land allocation is the subject of extensive research, space allocation for interacting modes of transport is an open research question. Quantifying the impact of road space distribution on the performance of a congested multimodal transport system with a dynamic aggregated model remains a challenge. In this paper, a multimodal macroscopic fundamental diagram (MFD) is developed to represent the traffic dynamics of a multimodal transport system. Optimization is performed with the objective of minimizing the total passenger hours traveled (PHT) to serve the total demand by redistributing road space among modes. Pricing strategies are also investigated to provide a higher demand shift to more efficient modes. We find by an application to a bi-modal two-region city that (i) the proposed model captures the operational characteristics of each mode, and (ii) optimal dynamic space distribution strategies can be developed. In practice, the approach can serve as a physical dynamic model to inform space distribution strategies for policy makers with different goals of mobility.  相似文献   

7.
The field of research that has recently come to the fore is the perimeter control, which aims to control traffic demand for a large urban area prior to controlling internal flow inside the area. Such control concept needs to be tested by simulations, hence, it is necessary to develop a model that can appropriately estimate the network-wide flow dynamics. In this paper, agent-based network transmission model (ANTM) is proposed for describing the aggregated flow dynamics over an urban area of multiple large-scale networks. The proposed model is the combination of the cell transmission model (CTM), macroscopic fundamental diagram (MFD), and agent concept. The CTM-based simulation is adopted for the simplicity considering the computation requirements for real-time feasibility. The MFD concept is applied for representing the network properties, and a new approach is taken particularly for estimating network outflow affected by both demand patterns and boundary capacity. The agent concept is applied for representing drivers’ travel behaviors. The model is compared with microscopic simulations and shows reasonable accuracy for large areas. In addition, various travel direction choice behaviors are applicable to this model. Various perimeter control policies are applicable as well, thus, the proposed model can be a useful tool for testing various control methods, in terms of reducing the congestion in urban areas.  相似文献   

8.
A field experiment in Yokohama (Japan) reveals that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. The experiment used a combination of fixed detectors and floating vehicle probes as sensors. It was observed that when the somewhat chaotic scatter-plots of speed vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped neatly along a smoothly declining curve. This evidence suggests, but does not prove, that an MFD exists for the complete network because the fixed detectors only measure conditions in their proximity, which may not represent the whole network. Therefore, the analysis was enriched with data from GPS-equipped taxis, which covered the entire network. The new data were filtered to ensure that only full-taxi trips (i.e., representative of automobile trips) were retained in the sample. The space-mean speeds and densities at different times-of-day were then estimated for the whole study area using relevant parts of the detector and taxi data sets. These estimates were still found to lie close to a smoothly declining curve with deviations smaller than those of individual links – and entirely explained by experimental error. The analysis also revealed a fixed relation between the space-mean flows on the whole network, which are easy to estimate given the existence of an MFD, and the trip completion rates, which dynamically measure accessibility.  相似文献   

9.
This work proposes a nonlinear model predictive controller for the urban gating problem. The system model is formalized based on a research on existing models of the network fundamental diagram and the perimeter control systems. For the existing models, modifications are suggested: additional state variables are allocated to describe the queue dynamics at the network gates. Using the extended model, a nonlinear model predictive controller is designed offering a ‘non‐greedy’ policy compared with previous, ‘greedy’ gating control designs. The greedy and non‐greedy nonlinear model predictive control (NMPC) controllers are compared with a greedy linear feedback proportional‐integral‐derivative (PID) controller in different traffic situations. The proposed non‐greedy NMPC controller outperforms the other two approaches in terms of travel distance performance and queue lengths. The performance results justify the consideration of queue lengths in dynamic modeling, and the use of NMPC approach for controller design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A simple model of traffic flow is used to analyze the spatio-temporal distribution of flow and density on closed-loop homogeneous freeways with many ramps, which produce inflows and allow outflows. As we would expect, if the on-ramp demand is space-independent then this distribution tends toward uniformity in space if the freeway is either: (i) uncongested; or (ii) congested with queues on its on-ramps and enough inflow to cause the average freeway density to increase with time. In all other cases, however, including any recovery phase of a rush hour where the freeway’s average density declines, the distribution of flow and density quickly becomes uneven. This happens even under conditions of perfect symmetry, where the percentage of vehicles exiting at every off ramp is the same. The flow-density deviations from the average are shown to grow exponentially in time and propagate backwards in space with a fixed wave speed. A consequence of this type of instability is that, during recovery, gaps of uncongested traffic will quickly appear in the unevenly congested stream, reducing average flow. This extends the duration of recovery and invariably creates clockwise hysteresis loops on scatter-plots of average system flow vs. density during any rush hour that oversaturates the freeway. All these effects are quantified with formulas and verified with simulations. Some have been observed in real networks. In a more practical vein, it is also shown that the negative effects of instability diminish (i.e., freeway flows increase) if (a) some drivers choose to exit the freeway prematurely when it is too congested and/or (b) freeway access is regulated in a certain traffic-responsive way. These two findings could be used to improve the algorithms behind VMS displays for driver guidance (finding a), and on-ramp metering rates (finding b).  相似文献   

11.
Traffic is multi-modal in most cities. However, the impacts of different transport modes on traffic performance and on each other are unclear – especially at the network level. The recent extension of the macroscopic fundamental diagram (MFD) into the 3D-MFD offers a novel framework to address this gap at the urban scale. The 3D-MFD relates the network accumulation of cars and public transport vehicles to the network travel production, for either vehicles or passengers. No empirical 3D-MFD has been reported so far.In this paper, we present the first empirical estimate of a 3D-MFD at the urban scale. To this end, we use data from loop detectors and automatic vehicle location devices (AVL) of the public transport vehicles in the city of Zurich, Switzerland. We compare two different areas within the city, that differ in their topology and share of dedicated lanes for public transport. We propose a statistical model of the 3D-MFD, which estimates the effects of the vehicle accumulation on car and public transport speeds under multi-modal traffic conditions. The results quantify the effects of both, vehicles and passengers, and confirm that a greater share of dedicated lanes reduces the marginal effects of public transport vehicles on car speeds. Lastly, we derive a new application of the 3D-MFD by identifying the share of public transport users that maximizes the journey speeds in an urban network accounting for all motorized transport modes.  相似文献   

12.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

13.
Despite its importance in macroscopic traffic flow modeling, comprehensive method for the calibration of fundamental diagram is very limited. Conventional empirical methods adopt a steady state analysis of the aggregate traffic data collected from measurement devices installed on a particular site without considering the traffic dynamics, which renders the simulation may not be adaptive to the variability of data. Nonetheless, determining the fundamental diagram for each detection site is often infeasible. To remedy these, this study presents an automatic calibration method to estimate the parameters of a fundamental diagram through a dynamic approach. Simulated flow from the cell transmission model is compared against the measured flow wherein an optimization merit is conducted to minimize the discrepancy between model‐generated data and real data. The empirical results prove that the proposed automatic calibration algorithm can significantly improve the accuracy of traffic state estimation by adapting to the variability of traffic data when compared with several existing methods under both recurrent and abnormal traffic conditions. Results also highlight the robustness of the proposed algorithm. The automatic calibration algorithm provides a powerful tool for model calibration when freeways are equipped with sparse detectors, new traffic surveillance systems lack of comprehensive traffic data, or the case that lots of detectors lose their effectiveness for aging systems. Furthermore, the proposed method is useful for off‐line model calibration under abnormal traffic conditions, for example, incident scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Existing methods for calibrating link fundamental diagrams (FDs) often focus on a limited number of links and use grouping strategies that are largely dependent on roadway physical attributes alone. In this study, we propose a big data-driven two-stage clustering framework to calibrate link FDs for freeway networks. The first stage captures, under normal traffic state, the variations of link FDs over multiple days based on which links are clustered in the second stage. Two methods, i.e. the standard k-means algorithm combined with hierarchical clustering and a modified hierarchical clustering based on the Fréchet distance, are applied in the first stage to obtain the FD parameter matrix for each link. The calibrated matrices are input into the second stage where the modified hierarchical clustering is re-employed as a static approach resulting in multiple clusters of links. To further consider the variations of link FDs, the static approach is extended by modifying the similarity measure through the principle component analysis (PCA). The resulting multivariate time-series clustering models the distributions of the FD parameters as a dynamic approach. The proposed framework is applied on the Melbourne freeway network using one-year worth of loop detector data. Results have shown that (a) similar roadway physical attributes do not necessarily result in similar link FDs, (b) the connectivity-based approach performs better in clustering link FDs as compared with the centroid-based approach, and (c) the proposed framework helps achieving a better understanding of the spatial distribution of links with similar FDs and the associated variations and distributions of the FD parameters.  相似文献   

15.
The Macroscopic Fundamental Diagram (MFD) has been recognized as a powerful framework to develop network-wide control strategies. Recently, the concept has been extended to the three-dimensional MFD, used to investigate traffic dynamics of multi-modal urban cities, where different transport modes compete for, and share the limited road infrastructure. In most cases, the macroscopic traffic variables are estimated using either loop detector data (LDD) or floating car data (FCD). Taking into account that none of these data sources might be available, in this study we propose novel estimation methods for the space-mean speed of cars based on: (i) the automatic vehicle location (AVL) data of public transport where no FCD is available; and (ii) the fused FCD and AVL data sources where both are available, but FCD is not complete. Both methods account for the network configuration layout and the configuration of the public transport system. The first method allows one to derive either uni-modal or bi-modal macroscopic fundamental relationships, even in the extreme cases where no LDD nor FCD exist. The second method does not require a priori knowledge about FCD penetration rates and can significantly improve the estimation accuracy of the macroscopic fundamental relationships. Using empirical data from the city of Zurich, we demonstrate the applicability and validate the accuracy of the proposed methods in real-life traffic scenarios, providing a cross-comparison with the existing estimation methods. Such empirical comparison is, to the best of our knowledge, the first of its kind. The findings show that the proposed AVL-based estimation method can provide a good approximation of the average speed of cars at the network level. On the other hand, by fusing the FCD and AVL data, especially in case of sparse FCD, it is possible to obtain a more representative outcome regarding the performance of multi-modal traffic.  相似文献   

16.
Congestion pricing schemes have been traditionally derived based on analytical representations of travel demand and traffic flows, such as in bottleneck models. A major limitation of these models, especially when applied to urban networks, is the inconsistency with traffic dynamics and related phenomena such as hysteresis and the capacity drop. In this study we propose a new method to derive time-varying tolling schemes using the concept of the Network Fundamental Diagram (NFD). The adopted method is based on marginal cost pricing, while it also enables to account realistically for the dynamics of large and heterogeneous traffic networks. We derive two alternative cordon tolls using network-aggregated traffic flow conditions: a step toll that neglects the spatial distribution of traffic by simply associating the marginal costs of any decrease in production within the NFD to the surplus of traffic; and a step toll that explicitly accounts for how network performance is also influenced by the spatial variance in a 3D-NFD. This pricing framework is implemented in the agent-based simulation model MATSim and applied to a case study of the city of Zurich. The tolling schemes are compared with a uniform toll, and they highlight how the inhomogeneous distribution of traffic may compromise the effectiveness of cordon tolls.  相似文献   

17.
Traffic control is an effective and efficient method for the problem of traffic congestion. It is necessary to design a high‐level controller to regulate the network traffic demands, because traffic congestion is not only caused by the improper management of the traffic network but also to a great extent caused by excessive network traffic demands. Therefore, we design a demand‐balance model predictive controller based on the macroscopic fundamental diagram‐based multi‐subnetwork model, which can optimize the network traffic mobility and the network traffic throughput by regulating the input traffic flows of the subnetworks. Because the transferring traffic flows among subnetworks are indirectly controlled and coordinated by the demand‐balance model predictive controller, the subnetwork division can variate dynamically according to real traffic states, and a global optimality can be achieved for the entire traffic network. The simulation results show the effectiveness of the proposed controller in improving the network traffic throughput. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Recent studies demonstrated the efficiency of feedback-based gating control in mitigating congestion in urban networks by exploiting the notion of macroscopic or network fundamental diagram (MFD or NFD). The employed feedback regulator of proportional-integral (PI)-type targets an operating NFD point of maximum throughput to enhance the mobility in the urban road network during the peak period, under saturated traffic conditions. In previous studies, gating was applied directly at the border of the protected network (PN), i.e. the network part to be protected from over-saturation. In this work, the recently developed feedback-based gating concept is applied at junctions located further upstream of the PN. This induces a time-delay, which corresponds to the travel time needed for gated vehicles to approach the PN. The resulting extended feedback control problem can be also tackled by use of a PI-type regulator, albeit with different gain values compared to the case without time-delay. Detailed procedures regarding the appropriate design of related feedback regulators are provided. In addition, the developed feedback concept is shown to work properly with very long time-steps as well. A large part of the Chania, Greece, urban network, modelled in a microscopic simulation environment under realistic traffic conditions, is used as test-bed in this study. The reported results demonstrate a stable and efficient behaviour and improved mobility of the overall network in terms of mean speed and travel time.  相似文献   

19.
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   

20.
Taxis are increasingly becoming a prominent mobility mode in many major cities due to their accessibility and convenience. The growing number of taxi trips and the increasing contribution of taxis to traffic congestion are cause for concern when vacant taxis are not distributed optimally within the city and are unable to find unserved passengers effectively. A way of improving taxi operations is to deploy a taxi dispatch system that matches the vacant taxis and waiting passengers while considering the search friction dynamics. This paper presents a network-scale taxi dispatch model that takes into account the interrelated impact of normal traffic flows and taxi dynamics while optimizing for an effective dispatching system. The proposed model builds on the concept of the macroscopic fundamental diagram (MFD) to represent the dynamic evolution of traffic conditions. The model considers multiple taxi service firms operating in a heterogeneously congested city, where the city is assumed to be partitioned into multiple regions each represented with a well-defined MFD. A model predictive control approach is devised to control the taxi dispatch system. The results show that lack of the taxi dispatching system leads to severe accumulation of unserved taxi passengers and vacant taxis in different regions whereas the dispatch system improves the taxi service performance and reduces traffic congestion by regulating the network towards the undersaturated condition. The proposed framework demonstrates sound potential management schemes for emerging mobility solutions such as fleet of automated vehicles and demand-responsive transit services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号