首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study empirically investigated service quality, switching costs and customer loyalty from home‐delivery services' customers' perceptive. With regard to service quality attributes, findings indicated that customers were most satisfied with ‘range of delivery’, followed by ‘seldom loses parcels’, ‘invoice accuracy’, ‘prompt and reliable collection’ and ‘delivery by due time’. They were least satisfied with competitiveness of price. A structural equation modelling (SEM) approach was employed to analyse the impact of service quality and switching costs on customer loyalty from customers' perspective. Results revealed that service quality positively influenced switching costs and customer loyalty, and switching costs had a positive effect on customer loyalty. Investigation of the moderating effect of switching costs on the relationship between service quality and customer loyalty indicated that it was significantly important. Theoretical and practical implications of the findings for firms providing home‐delivery services are discussed.  相似文献   

2.
Taxi service is an important component of airport ground access, which affects the economic competitiveness of an airport and its potential positive impact on the surrounding region. Airports across the globe experience both taxi shortages and excesses due to various factors such as the airport’s proximity to the city center, timing and frequency of flights, and the fare structure. Since taxi drivers are independent entities whose decisions affect the taxi supply at airports, it is important to understand taxi drivers’ decision mechanisms in order to suggest policies and to maintain taxi demand and supply equilibrium at the airports. In this paper, New York City (NYC) taxi drivers’ decisions about airport pick-ups or cruising for customers at the end of each trip is modeled using logistic regression based on a large taxi GPS dataset. The presented approach helps to quantify the potential impacts of parameters and to rank their influence for policy recommendations. The results reveal that spatial variables (mainly related to proximity) have the highest impact on taxi drivers’ airport pickup decisions, followed by temporal, environmental and driver-shift related variables. Along with supplementary information from unstructured taxi driver interviews, the model results are used to suggest policies for the improvement of John F. Kennedy (JFK) airport’s ground access and passenger satisfaction, i.e. the implementation of taxi driver frequent airport server punch cards and a time-specific ride share program.  相似文献   

3.
This paper proposes an equilibrium model to characterize the bilateral searching and meeting between customers and taxis on road networks. A taxi driver searches or waits for a customer by considering both the expected searching or waiting time cost and ride revenue, and a customer seeks a taxi ride to minimize full trip price. We suppose that the bilateral taxi–customer searching and meeting occurs anywhere in residential and commercial zones or at prescribed taxi stands, such as an airport or a railway station. We propose a meeting function to spell out the search and meeting frictions that arise endogenously as a result of the distinct spatial feature of the area and the taxi–customer moving decisions. With the proposed meeting function and the assumptions underlying taxi–customer search behaviors, the stationary competitive equilibrium achieved at fixed fare prices is determined when the demand of the customers matches the supply of taxis or there is market clearing at the prevailing searching and waiting times in every meeting location. We establish the existence of such an equilibrium by virtue of Brouwer’s fixed-point theorem and demonstrate its principal operational characteristics with a numerical example.  相似文献   

4.
We investigate how customers respond to an opaque airline product offered by a European carrier. In this opaque product design, customers are randomly assigned to travel to one of approximately ten destinations; however, for a fee they may exclude one or more destinations from the choice set (or a particular package design) prior to learning which destination they will travel to. We use a multidimensional binary logit model to predict the probability that one or more alternatives will be chosen by a customer. Results show that customers are more likely to pay to exclude destinations located close to the origin airport and destinations that speak the same language as the origin airport. Length of stay, cost of living at the destination, and measures of destination attractiveness are also found to be significant predictors for some package designs. Based on these findings, we offer general recommendations for how to design opaque packages for airline customers.  相似文献   

5.
Establishing how to utilize check-in counters at airport passenger terminals efficiently is a major concern facing airport operators and airlines. Inadequate terminal capacity and the inefficient utilization of facilities such as check-in counters are major factors causing congestion and delays at airport passenger terminals. However, such delays and congestion can be reduced by increasing the efficiency of check-in counter operations, based on an understanding of passengers' airport access behaviour. This paper presents an assignment model for check-in counter operations, based on passengers' airport arrival patterns. In setting up the model, passenger surveys are used to determine when passengers arrive at the airport terminals relative to their flight departure times. The model then uses passenger arrival distribution patterns to calculate the most appropriate number of check-in counters and the duration of time that each counter should be operated. This assignment model has been applied at the Seoul Gimpo International Airport in Korea. The model provides not only a practical system for the efficient operations of time-to-time check-in counter assignments, but also a valuable means of developing effective longer-term solutions to the problem of passenger terminal congestion and delays. It also offers airlines a means of operating check-in counters with greater cost effectiveness, thus leading to enhanced customer service.  相似文献   

6.
This study explores determinants of customer choice behaviour in passenger rail competition on two cross-border routes, Cologne–Brussels and Cologne–Amsterdam. It fills a gap in the literature on competition in commercial passenger rail by relying on newly collected stated preference data from about 700 on-train interviews. Our multinomial Logit estimations reveal two important effects that are closely connected to (psychological) switching costs. First, the customers on the route Cologne–Amsterdam, for whom competition is a purely hypothetical situation, value a competitive market structure lower than customers on the already competitive route Cologne–Brussels. Second, travellers show a status quo bias with a preference for the service provider on whose trains they were interviewed. This effect goes beyond the impact exercised by explanatory variables capturing the observable differences of the services and customers, including loyalty-enhancing effects like the possession of customer cards. Our results imply that entry into the commercial passenger rail market may be more difficult than often thought. Thus, the study contributes to explaining the low level of competition in these markets in Europe.  相似文献   

7.
Drones are one of the most intensively studied technologies in logistics in recent years. They combine technological features matching current trends in transport industry and society like autonomy, flexibility, and agility. Among the various concepts for using drones in logistics, parcel delivery is one of the most popular application scenarios. Companies like Amazon test drones particularly for last-mile delivery intending to achieve both reducing total cost and increasing customer satisfaction by fast deliveries. As drones are electric vehicles, they are also often claimed to be an eco-friendly mean of transportation.In this paper an energy consumption model for drones is proposed to describe the energy demand for drone deliveries depending on environmental conditions and the flight pattern. The model is used to simulate the energy demand of a stationary parcel delivery system which serves a set customers from a depot. The energy consumed by drones is compared to the energy demand of Diesel trucks and electric trucks serving the same customers from the same depot.The results indicate that switching to a solely drone-based parcel delivery system is not worthwhile from an energetic perspective in most scenarios. A stationary drone-based parcel delivery system requires more energy than a truck-based parcel delivery system particularly in urban areas where customer density is high and truck tours are comparatively short. In rather rural settings with long distances between customers, a drone-based parcel delivery system creates an energy demand comparable to a parcel delivery system with electric trucks provided environmental conditions are moderate.  相似文献   

8.
In this paper, we build an aggregate demand model for air passenger traffic in a hub-and-spoke network. This model considers the roles of airline service variables such as service frequency, aircraft size, ticket price, flight distance, and number of spokes in the network. It also takes into account the influence of local passengers and social-economic and demographic conditions in the spoke and hub metropolitan areas. The hub airport capacity, which has a significant impact on service quality in the hub airport and in the whole hub-and-spoke network, is also taken into consideration.Our demand model reveals that airlines can attract more connecting passengers in a hub-and-spoke network by increasing service frequency than by increasing aircraft size in the same percentage. Our research confirms the importance of local service to connecting passengers, and finds that, interestingly, airlines’ services in the first flight leg are more important to attract passengers than those in the second flight segment. Based on data in this study, we also find that a 1% reduction of ticket price will bring about 0.9% more connecting passengers, and a 1% increase of airport acceptance rate can bring about 0.35% more connecting passengers in the network, with all else equal. These findings are helpful for airlines to understand the effects of changing their services, and also useful for us to quantify the benefits of hub airport expansion projects.At the end of this paper, we give an example as an application to demonstrate how the developed demand model could be used to valuate passengers’ direct benefit from airport capacity expansion.  相似文献   

9.
This paper examines the effects of nonlinear fare structures in taxi markets using an extended taxi model with an explicit consideration of perceived profitability. The expected profit, defined as the profit per unit time (inclusive of both occupied and vacant taxi times), that a taxi driver expects to receive from picking up a customer in a particular zone or location, has great impact on the taxi driver’s choice of location in the search for customers. The fare structure directly governs the profitability of taxi rides of different distances originating from different locations. With these explicit considerations, the extended model is intended to look into the market effects of adopting a nonlinear fare structure with declining incremental charges. The proposed nonlinear fare structure could help restore a level-playing field for taxi operators whose businesses have been affected by some taxi drivers who resort to practices such as offering fare discounts or accepting requests for discounted fares from passengers for long-haul trips. Analysis of sensitivity of social welfare and profit gain as well as taxi/customer wait/search times is conducted with respect to the parameters in the nonlinear fare structure for the Hong Kong taxi market, and Pareto-improving nonlinear fare amendments are identified that neither disadvantage any customer nor reduce the taxi operators’ profits.  相似文献   

10.
We consider the assignment of gates to arriving and departing flights at a large hub airport. This problem is highly complex even in planning stage when all flight arrivals and departures are assumed to be known precisely in advance. There are various considerations that are involved while assigning gates to incoming and outgoing flights (such a flight pair for the same aircraft is called a turn) at an airport. Different gates have restrictions, such as adjacency, last‐in first‐out gates and towing requirements, which are known from the structure and layout of the airport. Some of the cost components in the objective function of the basic assignment model include notional penalty for not being able to assign a gate to an aircraft, penalty for the cost of towing an aircraft with a long layover, and penalty for not assigning preferred gates to certain turns. One of the major contributions of this paper is to provide mathematical model for all these complex constraints that are observed at a real airport. Further, we study the problem in both planning and operations modes simultaneously, and such an attempt is, perhaps, unique and unprecedented. For planning mode, we sequentially introduce new additional objectives to our gate assignment problem that have not been studied in the literature so far—(i) maximization of passenger connection revenues, (ii) minimization of zone usage costs, and (iii) maximization of gate plan robustness—and include them to the model along with the relevant constraints. For operations mode, the main objectives studied in this paper are recovery of schedule by minimizing schedule variations and maintaining feasibility by minimal retiming in the event of major disruptions. Additionally, the operations mode models must have very, very short run times of the order of a few seconds. These models are then applied to a functional airline at one of its most congested hubs. Implementation is carried out using Optimization Programming Language, and computational results for actual data sets are reported. For the planning mode, analyst perception of weights for the different objectives in the multi‐objective model is used wherever actual dollar value of the objective coefficient is not available. The results are also reported for large, reasonable changes in objective function coefficients. For the operations mode, flight delays are simulated, and the performance of the model is studied. The final results indicate that it is possible to apply this model to even large real‐life problems instances to optimality within short run times with clever formulation of conventional continuous time assignment model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Airspace Flow Programs (AFPs) assign ground delays to flights in order to limit flow through capacity constrained airspace regions. AFPs have been successful in controlling traffic with reasonable delays, but a new program called the Combined Trajectory Options Program, or CTOP, is being explored to further accommodate projected increases in traffic demand. In CTOP, centrally managed rerouting and user preference inputs are also incorporated into initial en route resource allocations. We investigate four alternative versions of resource allocation within CTOP in this research, under differing assumptions about the degree of random variability in airline flight assignment costs when measured against a simple model based upon the flight specific, but otherwise fixed, ratio of airborne flight time and ground delay unit cost. Two en route resource allocation schemes are based on ordered assignments that are similar to those used currently, and the other two are system-optimal assignment schemes. One of these system-optimal schemes is based on complete preference information, which is ideal but not realistic, and the other is based on partial information that may be feasible to implement but yields less efficient assignments. The main contribution of this research is a methodological framework to evaluate and compare these alternative en route resource allocation schemes, under varying assumptions about the information traffic managers have been provided about the flight operators’ route preferences. The framework allows us to evaluate these various schemes under differing assumptions about how well the traffic managers’ flight cost model captures flight costs. A numerical example demonstrates that a sequential resource allocation scheme – where flights are assigned resources in the order in which preference information is submitted – can be more efficient than a scheme that offers a cost minimizing allocation based on less complete preference information, and may at the same time be perceived as equitable. We also find that assigning resources in the order flights are scheduled results in less efficient allocations, but more equitable ones.  相似文献   

12.
To better understand how road congestion adversely affects trucking operations, we surveyed approximately 1200 managers of all types of trucking companies operating in California. More than 80% of these managers consider traffic congestion on freeways and surface streets to be either a “somewhat serious” or “critically serious” problem for their business. A structural equations model (SEM) is estimated on these data to determine how five aspects of the congestion problem differ across sectors of the trucking industry. The five aspects were slow average speeds, unreliable travel times, increased driver frustration and morale, higher fuel and maintenance costs, and higher costs of accidents and insurance. The model also simultaneously estimates how these five aspects combine to predict the perceived overall magnitude of the problem. Overall, congestion is perceived to be a more serious problem by managers of trucking companies engaged in intermodal operations, particularly private and for-hire trucking companies serving airports and private companies serving rail terminals. Companies specializing in refrigerated transport also perceive congestion to be a more serious overall problem, as do private companies engaged in LTL operations. The most problematic aspect of congestion is unreliable travel times, followed by driver frustration and morale, then by slow average speeds. Unreliable travel times are a significantly more serious problem for intermodal air operations. Driver frustration and morale attributable to congestion is perceived to be more of a problem by managers of long-haul carriers and tanker operations. Slow average speeds are also more of a concern for airport and refrigerated operations.  相似文献   

13.
China’s Dalian International Airport is taken to compare the aircraft noise pollution and the cost-risk effects of the expanded an existing inland and a proposed offshore airport. The findings show that the aircraft noise pollution of the offshore airport is much less than that of the expanded inland airport; the land-use cost, noise reduction charges and other risks of the offshore airport are also much less; the creation of the offshore airport may be more favorable to the city’s development.  相似文献   

14.
This paper studies a reliable joint inventory-location problem that optimizes facility locations, customer allocations, and inventory management decisions when facilities are subject to disruption risks (e.g., due to natural or man-made hazards). When a facility fails, its customers may be reassigned to other operational facilities in order to avoid the high penalty costs associated with losing service. We propose an integer programming model that minimizes the sum of facility construction costs, expected inventory holding costs and expected customer costs under normal and failure scenarios. We develop a Lagrangian relaxation solution framework for this problem, including a polynomial-time exact algorithm for the relaxed nonlinear subproblems. Numerical experiment results show that this proposed model is capable of providing a near-optimum solution within a short computation time. Managerial insights on the optimal facility deployment, inventory control strategies, and the corresponding cost constitutions are drawn.  相似文献   

15.
The most commonly used criteria to determine complicated airport obstacle surfaces are FAR Part 77 imaginary surfaces, TERPS, and the one engine inoperative obstacle identification surface for air carriers. For each obstacle surface there are tradeoffs encountered in our practice between the obstruction penetration and extension of runway, change of flight profile, and allowable aircraft maximum payloads. For the purposes of both airport engineering and airport planning, a better understanding of these different obstacle surfaces and their application is important. In this paper, the differences and relationships between these surfaces are addressed. The conditions for the use of each criterion are discussed. In addition, the FAA's Obstruction Evaluation / Airport Airspace Analysis (OE/AAA) process is reviewed.  相似文献   

16.
Transit agencies frequently upgrade rail tracks to bring the system to a state of good repair (SGR) and to improve the speed and reliability of urban rail transit service. For safety during construction, agencies establish slow zones in which trains must reduce speed. Slow zones create delays and schedule disruptions that result in customer dissatisfaction and discontinued use of transit, either temporarily or permanently. While transit agencies are understandably concerned about the possible negative effects of slow zones, empirical research has not specifically examined the relationship between slow zones and ridership. This paper partially fills that gap. Using data collected from the Chicago Transit Authority (CTA) Customer Experience Survey, CTA Slow Zone Maps, and, the Automatic Fare Collection System (AFC), it examines whether recurring service delays due to slow zones affect transit rider behavior and if the transit loyalty programs, such as smart card systems, increase or decrease rider defections. Findings suggest that slow zones increase headway deviation which reduces ridership. Smart card customers are more sensitive to slow zones as they are more likely to stop using transit as a result of delay. The findings of this paper have two major policy implications for transit agencies: (1) loyalty card users, often the most reliable source of revenue, are most at risk for defection during construction and (2) it is critical to minimize construction disruptions and delays in the long run by maintaining state of good repair. The results of this paper can likely be used as the basis for supporting immediate funding requests to bring the system to an acceptable state of good repair as well as stimulating ideas about funding reform for transit.  相似文献   

17.
The aeronautical industry is still under expansion in spite of the problems it is facing due to the increase in oil prices, limited capacity, and novel regulations. The expansion trends translate into problems at different locations within an airport system and are more evident when the resources to cope with the demand are limited or are reaching to theirs limits. In the check-in areas they are appreciated as excessive waiting times which in turn are appreciated by the customers as bad service levels. The article presents a novel methodology that combines an evolutionary algorithm and simulation in order to give the best results taking into account not only the mandatory hard and soft rules determined by the internal policies of an airport terminal but also the quality indicators which are very difficult to include using an abstract representation. The evolutionary algorithm is developed to satisfy the different mandatory restrictions for the allocation problem such as minimum and maximum number of check-in desks per flight, load balance in the check-in islands, opening times of check-in desks and other restrictions imposed by the level of service agreement. Once the solutions are obtained, a second evaluation is performed using a simulation model of the terminal that takes into account the stochastic aspects of the problem such as arriving profiles of the passengers, opening times physical configurations of the facility among other with the objective to determine which allocation is the most efficient in real situations in order to maintain the quality indicators at the desired level.  相似文献   

18.
This study estimates airport noise annoyance cost around Düsseldorf, Germany by examining rental apartment market data. Using data on regional apartment offers we estimate rent discounts of 1.04% per additional decibel of airport noise. Other sources of traffic noise induce significantly lower price effects. As a result, airport noise annoyance costs amount to about €7.5 million a year. While the noise protection fund recovers annoyance costs, the charging regime of the airport fails to fully internalize them.  相似文献   

19.
Abstract

This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models.  相似文献   

20.
Aviation is a fast growing sector with increasing environmental concerns linked to aircraft emissions at airports and noise nuisance. This paper investigates the factors affecting the annual environmental effects produced by a national aviation system. The environmental effects are computed using certification data for each aircraft-engine combination. Moreover, we also take into account for the amount of environmental effects that is internalized at the airport, mainly through noise regulation. We study a dataset covering information on Italian airports during the period 1999–2008. We show that a 1% increase in airport’s yearly movements yields a 1.05% increase in environmental effects, a 1% in aircraft size (measured in MTOW) gives rise to a 1.8% increase and a 1% increase in aircraft age generates a 0.69% increase in environmental effects. Similar results but with smaller magnitudes are observed if airport internalization is considered. Our policy implications are that the tariff internalizing the total amount of externality is about euro 180 per flight, while the tariff limiting only pollution is about euro 60 and the one reducing noise is about euro 110. Moreover, our airport examples show that managers should prefer to address additional capacity by increasing frequency rather than aircraft size, since the former strategy is more environmental friendly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号