共查询到20条相似文献,搜索用时 0 毫秒
1.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model. 相似文献
2.
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions. 相似文献
4.
In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability. 相似文献
5.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way. 相似文献
6.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes. 相似文献
7.
Lawrence Frank Mark Bradley Sarah Kavage James Chapman T. Keith Lawton 《Transportation》2008,35(1):37-54
The primary purpose of this study was to investigate how relative associations between travel time, costs, and land use patterns
where people live and work impact modal choice and trip chaining patterns in the Central Puget Sound (Seattle) region. By
using a tour-based modeling framework and highly detailed land use and travel data, this study attempts to add detail on the
specific land use changes necessary to address different types of travel, and to develop a comparative framework by which
the relative impact of travel time and urban form changes can be assessed. A discrete choice modeling framework adjusted for
demographic factors and assessed the relative effect of travel time, costs, and urban form on mode choice and trip chaining
characteristics for the three tour types. The tour based modeling approach increased the ability to understand the relative
contribution of urban form, time, and costs in explaining mode choice and tour complexity for home and work related travel.
Urban form at residential and employment locations, and travel time and cost were significant predictors of travel choice.
Travel time was the strongest predictor of mode choice while urban form the strongest predictor of the number of stops within
a tour. Results show that reductions in highway travel time are associated with less transit use and walking. Land use patterns
where respondents work predicted mode choice for mid day and journey to work travel.
Lawrence Frank is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting. 相似文献
T. Keith LawtonEmail: |
Lawrence Frank is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting. 相似文献
8.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability. 相似文献
9.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability. 相似文献
10.
Empirical studies have revealed that travel time variability (TTV) can significantly affect travelers’ behaviors and planners’ cost-benefit assessment of transportation projects. It is therefore important to systematically quantify the value of TTV (VTTV) and its impact. Recently, Fosgerau’s valuation method makes this quantification possible by converting the value of travel time (VTT) and the VTTV into monetary unit. Travel time reliability ratio (TTRR), defined as a ratio of the VTTV to the VTT, is a key parameter in Fosgerau’s valuation method. Calculating TTRR involves an integral of the inverse cumulative distribution function (CDF) of the standardized travel time distribution (STTD), i.e., the mean lateness factor. Using a well-fitted STTD is a straightforward way to calculate TTRR. However, it will encounter the following challenges: (1) determination of a well-fitted STTD; (2) non-existence of an algebraic expression for the CDF and its inverse CDF; and (3) lack of a closed-form expression to efficiently calculate TTRR. To circumvent the above issues, this paper proposes a distribution-fitting-free analytical approach based on the Cornish-Fisher expansion as an alternative way to calculate TTRR without the need to fit the whole CDF. The validity domain is rigorously derived for guaranteeing the accuracy of the proposed method. Realistic travel time datasets that cover 17 links are used to systematically explore the feature and accuracy of the proposed method in estimating TTRR. The comparative results demonstrate that the proposed method can efficiently and effectively estimate TTRR. When travel time datasets satisfy the validity domain, the proposed method outperforms the distribution fitting method in estimating TTRR. 相似文献
11.
Anthony Chen Zhong ZhouWilliam H.K. Lam 《Transportation Research Part B: Methodological》2011,45(10):1619-1640
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method. 相似文献
12.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general. 相似文献
13.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example. 相似文献
14.
路网可靠度研究是国内外交通运输领域的一个重要研究方向。文章结合国内外时间可靠度模型研究的现状,介绍了公路网运行时间可靠度的模型以及算法,并展望了时间可靠度理论的研究方向。 相似文献
15.
Physical inactivity of children and adolescents is a major public health challenge of the modern era but, when adequately promoted and nurtured, active travel offers immediate health benefits and forms future sustainable and healthy travel habits. This study explores jointly the choice and the extent of active travel of young adolescents while considering walking and cycling as distinct travel forms, controlling for objective urban form measures, and taking both a “street-buffer” looking at the immediate home surroundings and a “transport-zone” looking at wider neighborhoods. A Heckman selection model represents the distance covered while cycling (walking) given the mode choice being bicycle (walk) for a representative sample of 10–15 year-olds from the Capital Region of Denmark extracted from the Danish national travel survey. Results illustrate the necessity of different urban environments for walking and cycling, as the former relates to “street-buffer” urban form measures and the latter also to “transport-zone ” ones. Results also show that lessening the amount and the density of car traffic, diminishing the movement of heavy vehicles in local streets, reducing the conflict points with the density of intersections, and intervening on crash frequency and severity, would increase the probability and the amount of active travel by young adolescents. Last, results indicate that zones in rural areas and at a higher percentage of immigrants are likely to have lower probability and amount of active travel by young adolescents. 相似文献
16.
Urban systems are interdependent as individuals’ daily activities engage using those urban systems at certain time of day and locations. There may exist clear spatial and temporal correlations among usage patterns across all urban systems. This paper explores such a correlation among energy usage and roadway congestion. We propose a general framework to predict congestion starting time and congestion duration in the morning using the time-of-day electricity use data from anonymous households with no personally identifiable information. We show that using time-of-day electricity data from midnight to early morning from 322 households in the City of Austin, can make reliable prediction of congestion starting time of several highway segments, at the time as early as 2 am. This predictor significantly outperforms a time-series predictor that uses only real-time travel time data up to 6 am. We found that 8 out of the 10 typical electricity use patterns have statistically significant affects on morning congestion on highways in Austin. Some patterns have negative effects, represented by an early spike of electricity use followed by a drastic drop that could imply early departure from home. Others have positive effects, represented by a late night spike of electricity use possible implying late night activities that can lead to late morning departure from home. 相似文献
17.
ManWo Ng W.Y. SzetoS. Travis Waller 《Transportation Research Part B: Methodological》2011,45(6):852-866
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values. 相似文献
18.
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics. 相似文献
19.
Travel behavior researchers have been intrigued by the amount of time that people allocate to travel in a day, i.e., the daily
travel time expenditure, commonly referred to as a “travel time budget”. Explorations into the notion of a travel time budget
have once again resurfaced in the context of activity-based and time use research in travel behavior modeling. This paper
revisits the issue by developing the notion of a travel time frontier (TTF) that is distinct from the actual travel time expenditure
or budget of an individual. The TTF is defined in this paper as an intrinsic maximum amount of time that people are willing
to allocate for travel. It is treated as an unobserved frontier that influences the actual travel time expenditure measured
in travel surveys. Using travel survey datasets from around the world (i.e., US, Switzerland and India), this paper sheds
new light on daily travel time expenditures by modeling the unobserved TTF and comparing these frontiers across international
contexts. The stochastic frontier modeling methodology is employed to model the unobserved TTF as a production frontier. Separate
models are estimated for commuter and non-commuter samples to recognize the differing constraints between these market segments.
Comparisons across the international contexts show considerable differences in average unobserved TTF values. 相似文献
20.
Dongjoo Park Laurence R. Rilett Byron J. Gajewski Clifford H. Spiegelman Changho Choi 《Transportation》2009,36(1):77-95
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers
have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current
conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal
aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route
travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology
explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed
for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation
size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor,
(2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel
time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston,
Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It
was found that the optimal aggregation size is a function of the application and traffic condition.
相似文献
Changho ChoiEmail: |