首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research identifies key variables that influence fuel consumption that might be improved through eco-driving training programs under three circumstances that have been scarcely studied before: (a) heavy- and medium-duty truck fleets, (b) long-distance freight transport, and (c) the Latin American region. Based on statistical analyses that include multivariate regression of operational variables on fuel consumption, the impacts of an eco-driving training campaign were measured by comparing ex ante and ex post data. Operational variables are grouped into driving errors, trip conditions, driver behavior, driver profile, and vehicle attributes.The methodology is applied in a freight fleet with nationwide transport operations located in Colombia, where the steepness of its roads plays an important role in fuel consumption. The fleet, composed of 18 trucks, is equipped with state-of-the-art real-time data logger systems. During four months, 517 trips traveling a total distance of 292,512 km and carrying a total of 10,034 tons were analyzed.The results show a baseline average fuel consumption (FC) of 1.716 liters per ton-100 km. A different logistics performance indicator, which measures FC in liters per ton transported each 100 km, shows an average of 3.115. After the eco-driving campaign, reductions of 6.8% and 5.5% were obtained. Drivers’ experience, driving errors, average speed, and weight-capacity ratio, among others, were found to be highly relevant to FC. In particular, driving errors such as acceleration, braking and speed excesses are the most sensitive to eco-driving training, showing reductions of up to 96% on the average number of events per trip.  相似文献   

2.
This study evaluates effectiveness of driver education teaching greater fuel efficiency (Eco-Driving) in a real world setting in Australia. The driving behaviour, measured in fuel use (litres per 100 km of travel) of a sample of 1056 private drivers was monitored over seven months. 853 drivers received education in eco-driving techniques and 203 were monitored as a control group. A simple experimental design was applied comparing the pre and post training fuel use of the treated sample compared to a control sample. This study found the driver education led to a statistically significant reduction in fuel use of 4.6% or 0.51 litres per 100 km compared to the control group.  相似文献   

3.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day.  相似文献   

4.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

5.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

6.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

7.
Vehicles are considered to be an important source of ammonia (NH3) and isocyanic acid (HNCO). HNCO and NH3 have been shown to be toxic compounds. Moreover, NH3 is also a precursor in the formation of atmospheric secondary aerosols. For that reason, real-time vehicular emissions from a series of Euro 5 and Euro 6 light-duty vehicles, including spark ignition (gasoline and flex-fuel), compression ignition (diesel) and a plug-in electric hybrid, were investigated at 23 and −7 °C over the new World harmonized Light-duty vehicle Test Cycle (WLTC) in the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The median HNCO emissions obtained for the studied fleet over the WLTC were 1.4 mg km−1 at 23 °C and 6 mg km−1 at −7 °C. The fleet median NH3 emission factors were 10 mg km−1 and 21 mg km−1 at 23 and −7 °C, respectively. The obtained results show that even though three-way catalyst (TWC), selective catalytic reduction (SCR), and NOx storage catalyst (NSC) are effective systems to reduce NOx vehicular emissions, they also lead to considerable emissions of the byproducts NH3 and/or HNCO. It is also shown that diesel light-duty vehicles equipped with SCR can present NH3 emission factors as high as gasoline light-duty vehicles at both, 23 and −7 °C over the WLTC. Therefore, with the introduction in the market of this DeNOx technology, vehicular NH3 emissions will increase further.  相似文献   

8.
Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is not well understood, especially when it comes to travel choices and short-term driving decisions. Using data that contains a sufficiently large number of early AFV adopters (who have overcome obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with sensor data from global positioning system devices, representing advances in large-scale data analytics. Specifically, it makes sense of data containing 54,043,889 s of speed observations, and 65,652 trips made by 2908 drivers in 5 regions of California. The study answers important research questions about AFV use patterns (e.g., trip frequency and daily vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, battery electric, or compressed natural gas vehicles. Multi-level models are particularly appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different drivers who reside in various regions. Using such models, the study also found that driving volatility varies significantly between trips, driver groups, and regions in California. Some alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. The implications of the results for safety, informed consumer choices and large-scale data analytics are discussed.  相似文献   

9.
The heavy reliance on petroleum-derived fuels such as gasoline in the transportation sector is one of the major causes of environmental pollution. For this reason, there is a critical need to develop cleaner alternative fuels. Butanol is an alcohol with four different isomers that can be blended with gasoline to produce cleaner alternative fuels because of their favourable physicochemical properties compared to ethanol. This study examined the effect of butanol isomer-gasoline blends on the performance and emission characteristics of a spark ignition engine. The butanol isomers; n-butanol, sec-butanol, tert-butanol and isobutanol are mixed with pure gasoline at a volume fraction of 20 vol%, and the physicochemical properties of these blends are measured. Tests are conducted on a SI engine at full throttle condition within an engine speed range of 1000–5000 rpm. The results show that there is a significant increase in the engine torque, brake power, brake specific fuel consumption and CO2 emissions with respect to those for pure gasoline. The butanol isomers-gasoline blends give slightly higher brake thermal efficiency and exhaust gas temperature than pure gasoline at higher engine speeds. The iBu20 blend (20 vol% of isobutanol in gasoline) gives the highest engine torque, brake power and brake thermal efficiency among all of the blends tested in this study. The isobutanol and n-butanol blend results in the lowest CO and HC emissions, respectively. In addition, all of the butanol isomer-gasoline blends yield lower NO emissions except for the isobutanol-gasoline blend.  相似文献   

10.
The quest for more fuel-efficient vehicles is being driven by the increasing price of oil. Hybrid electric powertrains have established a presence in the marketplace primarily based on the promise of fuel savings through the use of an electric motor in place of the internal combustion engine during different stages of driving. However, these fuel savings associated with hybrid vehicle operation come at the tradeoff of a significantly increased initial vehicle cost due to the increased complexity of the powertrain. On the other hand, telematics-enabled vehicles may use a relatively cheap sensor network to develop information about the traffic environment in which they are operating, and subsequently adjust their drive cycle to improve fuel economy based on this information – thereby representing ‘intelligent’ use of existing powertrain technology to reduce fuel consumption. In this paper, hybrid and intelligent technologies using different amounts of traffic flow information are compared in terms of fuel economy over common urban drive cycles. In order to develop a fair comparison between the technologies, an optimal (for urban driving) hybrid vehicle that matches the performance characteristics of the baseline intelligent vehicle is used. The fuel economy of the optimal hybrid is found to have an average of 20% improvement relative to the baseline vehicle across three different urban drive cycles. Feedforward information about traffic flow supplied by telematics capability is then used to develop alternative driving cycles firstly under the assumption there are no constraints on the intelligent vehicle’s path, and then taking into account in the presence of ‘un-intelligent’ vehicles on the road. It is observed that with telematic capability, the fuel economy improvements equal that achievable with a hybrid configuration with as little as 7 s traffic look-ahead capability, and can be as great as 33% improvement relative to the un-intelligent baseline drivetrain. As a final investigation, the two technologies are combined and the potential for using feedforward information from a sensor network with a hybrid drivetrain is discussed.  相似文献   

11.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

12.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

13.
In this numerical study, the fuel-saving potentials of drag-reducing devices retrofitted on heavy vehicles are analysed. Realistic on-road operations are taken into account by simulating typical driving routes on long-haul and urban distributions; variations in vehicle weight are also considered. Results show that the performance of these aerodynamic devices depend both on their functions and how the vehicles are operated. Vehicles on long-haul routes generally save twice as much fuel as those driven in urban areas. The fuel reductions from using selected devices individually on a large truck range from less than 1% to almost 9% of the fuel cost of a vehicle doing an annual mileage is 80,000 miles.  相似文献   

14.
This research proposes an optimal controller to improve fuel efficiency for a vehicle equipped with automatic transmission traveling on rolling terrain without the presence of a close preceding vehicle. Vehicle acceleration and transmission gear position are optimized simultaneously to achieve a better fuel efficiency. This research leverages the emerging Connected Vehicle technology and utilizes present and future information—such as real-time dynamic speed limit, vehicle speed, location and road topography—as optimization input. The optimal control is obtained using the Relaxed Pontryagin’s Minimum Principle. The benefit of the proposed optimal controller is significant compared to the regular cruise control and other eco-drive systems. It varies with the hill length, grade, and the number of available gear positions. It ranges from an increased fuel saving of 18–28% for vehicles with four-speed transmission and 25–45% for vehicles with six-speed transmission. The computational time for the optimization is 1.0–2.1 s for the four-speed vehicle and 1.8–3.9 s for the six-speed vehicle, given a 50 s optimization time horizon and 0.1 s time step. The proposed controller can potentially be used in real-time.  相似文献   

15.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles.  相似文献   

16.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

17.
In this study, the use of energy carriers based on renewable energy sources in battery-powered electric vehicles (BPEVs), fuel-cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) is compared regarding energy efficiency, emission and cost. There is the potential to double the primary energy compared with the current level by utilising vehicles with electric drivetrains. There is also major potential to increase the efficiency of conventional ICEVs. The energy and environmental cost of using a passenger car can be reduced by 50% solely by using improved ICEVs instead of ICEVs with current technical standard. All the studied vehicles with alternative powertrains (HEVs, FCEVs, and BPEVs) would have lower energy and environmental costs than the ICEV. The HEVs, FCEVs and BPEVs have, however, higher costs than the future methanol-fuelled ICEV, if the vehicle cost is added to the energy and environmental costs, even if significant cost reductions for key technologies such as fuel cells, batteries and fuel storages are assumed. The high-energy efficiency and low emissions of these vehicles cannot compensate for the high vehicle cost. The study indicates, however, that energy-efficiency improvements, combined with the use of renewable energy, would reduce the cost of CO2 reduction by 40% compared with a strategy based on fuel substitution only.  相似文献   

18.
The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 ± 200 W/m2/AOD for the ground mode and 531 ± 190 W/m2/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 ± 0.06 W/m2 per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved.  相似文献   

19.
In this study a hydrogen powered fuel cell hybrid bus is optimized in terms of the powertrain components and in terms of the energy management strategy. Firstly the vehicle is optimized aiming to minimize the cost of its powertrain components, in an official driving cycle. The optimization variables in powertrain component design are different models and sizes of fuel cells, of electric motors and controllers, and batteries. After the component design, an energy management strategy (EMS) optimization is performed in the official driving cycle and in two real measured driving cycles, aiming to minimize the fuel consumption. The EMS optimization is based on the control of the battery’s state-of-charge. The real driving cycles are representative of bus driving in urban routes within Lisbon and Oporto Portuguese cities. A real-coded genetic algorithm is developed to perform the optimization, and linked with the vehicle simulation software ADVISOR. The trade-off between cost increase and fuel consumption reduction is discussed in the lifetime of the designed bus and compared to a conventional diesel bus. Although the cost of the optimized hybrid powertrain (62,230 €) achieves 9 times the cost of a conventional diesel bus, the improved efficiency of such powertrain achieved 36% and 34% of lower energy consumption for the real driving cycles, OportoDC and LisbonDC, which can originate savings of around 0.43 €/km and 0.37 €/km respectively. The optimization methodology presented in this work, aside being an offline method, demonstrated great improvements in performance and energy consumption in real driving cycles, and can be a great advantage in the design of a hybrid vehicle.  相似文献   

20.
This study introduces a new CONnectivity ROBustness model (CONROB) to assess vehicle-to-vehicle communication in connected vehicle (CV) environments. CONROB is based on Newton’s universal law of gravitation and accounts for multiple factors affecting the connectivity in CV environments such as market penetration, wireless transmission range, spatial distribution of vehicles relative to each other, the spatial propagation of the wireless signal, and traffic density. The proposed methodology for the connectivity robustness calculation in CONROB accounts for the Link Expiration Time (LET) and the Route Expiration Time (RET) that are reflected in the stability of links between each two adjacent vehicles and the expiration time of communication routes between vehicles. Using a 117 sq-km (45-square mile) network in Washington County, located west of Portland city, Oregon, a microscopic simulation model (VISSIM) was built to verify CONROB model. A total of 45 scenarios were simulated for different traffic densities generated from five different traffic demand levels, three levels of market penetration (5%, 15%, and 25%), and three transmission range values [76 (250), 152 (500), and 305 (1000) m (ft)]. The simulation results show that the overall robustness increases as the market penetration increases, given the same transmission range, and relative traffic density. Similarly, the overall connectivity robustness increases as the relative traffic density increases for the same market penetration. More so, the connectivity robustness becomes more sensitive to the relative traffic density at higher values of transmission range and market penetration. Multiple regression analysis was conducted to show the significant effect of relative traffic density, transmission range, and market penetration on the robustness measure. The results of the study provide an evidence of the ability of the model to capture the effect of the different factors on the connectivity between vehicles, which provides a viable tool for assessing CV environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号