共查询到20条相似文献,搜索用时 15 毫秒
1.
A utility-based travel impedance measure is developed for public transit modes that is capable of capturing the passengers’ behaviour and their subjective perceptions of impedance when travelling in the transit networks. The proposed measure is time-dependent and it estimates the realisation of the travel impedance by the community of passengers for travelling between an origin–destination (OD) pair.The main advantage of the developed measure, as compared to the existing transit impedance measures, relates to its capability in capturing the diversity benefit that the transit systems may offer the society of travellers with different traveling preferences. To clarify the necessity of such capability, we demonstrate the randomness (subjectivity) of travel impedance perceived by transit passengers, through evidence from the observed path choices made in the transit network of the greater Brisbane metropolitan region in Australia.The proposed impedance measure is basically a nested logit “logsum” composition over a generated set of reasonable path options whose systematic utilities are evaluated based on a discrete choice model previously developed and calibrated for the greater Brisbane transit passengers. As a case study, the proposed impedance measure is calculated for all the origin blocks in the Brisbane area, during the morning commutes to the Central Business District (CBD). The results are presented and discussed, and intuitive and important advantages are demonstrated for the proposed measure. 相似文献
2.
Efficient Transit Schedule Design of timing points: A comparison of Ant Colony and Genetic Algorithms 总被引:1,自引:0,他引:1
Ehsan Mazloumi Mahmoud MesbahAvi Ceder Sara MoridpourGraham Currie 《Transportation Research Part B: Methodological》2012,46(1):217-234
This work defines Transit Schedule Design (TSD) as an optimization problem to construct the transit schedule with the decision variables of the location of timing points and the amount of slack time associated with each timing point. Two heuristic procedures, Ant Colony and Genetic Algorithms, are developed for constructing optimal schedules for a fixed bus route. The paper presents a comparison of the fundamental features of the two algorithms. They are then calibrated based on data generated from micro-simulation of a bus route in Melbourne, Australia, to give rise to (near) optimal schedule designs. The algorithms are compared in terms of their accuracy and efficiency in providing the minimum cost solution. Although both procedures prove the ability to find the optimal solution, the Ant Colony procedure demonstrates a higher efficiency by evaluating less schedule designs to arrive at a ‘good’ solution. Potential benefits of the developed algorithms in bus route planning are also discussed. 相似文献
3.
Erin M. Ferguson Jennifer Duthie Avinash Unnikrishnan S. Travis Waller 《Transportation Research Part A: Policy and Practice》2012,46(1):190-199
This paper and the proposed formulation contribute to an apparent gap in transit research design by integrating equity considerations into the transit frequency-setting problem. The proposed approach provides a means to design transit service such that equitable access to basic amenities (e.g., employment, supermarkets, medical services) is provided for low-income populations or disadvantaged populations. The overarching purpose is to improve access via transit to basic amenities to: (1) reduce the disproportionate burden faced by transit dependent populations; and (2) create a more feasible transportation option for low-income households as an opportunity to increase financial security by reducing dependence on personal autos. The formulation is applied to data from a mid-sized US metropolitan area. The example application illustrates the formulation successfully increases access to employment opportunities for residents in areas with high percentages of low-income persons, as well as demonstrates the importance of considering uncertainty in the locations of populations and employment. 相似文献
4.
Despite the early appeal of the light vehicle, increases in the average annual income have allowed consumers to consider a broader range of vehicles so that the negative aspects of mini‐vehicles such as higher noise and vibration levels, the lack of horsepower and instability in certain driving conditions have made light vehicles less tolerable. The “oil shock” shattered economic projections, and people began to acknowledge that living in a world with limited resources was a harsh reality. Concurrently, congestion increased dramatically in urban areas as a result of the popularity of automobiles, and producers made a number of design changes to improve the safety and comfort limitations of light vehicles. Thus, in a world where fuel economy and ease of use gained a greater meaning, light vehicles slowly regained their original appeal. Light vehicles may play a greater role in the future. Studies indicate that light vehicles tend to be driven by females and elderly people and current trends indicate that the number of female drivers is increasing and that the average age of the Japanese population is getting higher. Furthermore, migration patterns indicate that a greater number of people are moving to smaller cities and their outlying areas as a result of national decentralization policies. The migration pattern may popularize light vehicles because vehicle ownership rates are higher in these areas than in larger cities. Another development which may increase the popularity of light vehicles is that more families are owning more than one car and light vehicles are popular as second vehicles. Moreover, the prospects of low economic growth have tempered the importance of comfortable amenities, and the virtues of maneuverability and fuel economy have become more important. 相似文献
5.
Abbas Khosravi Ehsan Mazloumi Saeid Nahavandi Doug Creighton J.W.C. Van Lint 《Transportation Research Part C: Emerging Technologies》2011,19(6):1364-1376
The transportation literature is rich in the application of neural networks for travel time prediction. The uncertainty prevailing in operation of transportation systems, however, highly degrades prediction performance of neural networks. Prediction intervals for neural network outcomes can properly represent the uncertainty associated with the predictions. This paper studies an application of the delta technique for the construction of prediction intervals for bus and freeway travel times. The quality of these intervals strongly depends on the neural network structure and a training hyperparameter. A genetic algorithm–based method is developed that automates the neural network model selection and adjustment of the hyperparameter. Model selection and parameter adjustment is carried out through minimization of a prediction interval-based cost function, which depends on the width and coverage probability of constructed prediction intervals. Experiments conducted using the bus and freeway travel time datasets demonstrate the suitability of the proposed method for improving the quality of constructed prediction intervals in terms of their length and coverage probability. 相似文献
6.
Development of an origin-destination demand matrix is crucial for transit planning. The development process is facilitated by automated transit smart card data, making it possible to mine boarding and alighting patterns on an individual basis. This research proposes a novel trip chaining method which uses Automatic Fare Collection (AFC) and General Transit Feed Specification (GTFS) data to infer the most likely trajectory of individual transit passengers. The method relaxes the assumptions on various parameters used in the existing trip chaining algorithms such as transfer walking distance threshold, buffer distance for selecting the boarding location, time window for selecting the vehicle trip, etc. The method also resolves issues related to errors in GPS location recorded by AFC systems or selection of incorrect sub-route from GTFS data. The proposed trip chaining method generates a set of candidate trajectories for each AFC tag to reach the next tag, calculates the probability of each trajectory, and selects the most likely trajectory to infer the boarding and alighting stops. The method is applied to transit data from the Twin Cities, MN, which has an open transit system where passengers tap smart cards only once when boarding (or when alighting on pay-exit buses). Based on the consecutive tags of the passenger, the proposed algorithm is also modified for pay-exit cases. The method is compared to previous methods developed by the researchers and shows improvement in the number of inferred cases. Finally, results are visualized to understand the route ridership and geographical pattern of trips. 相似文献
7.
This paper analyzes the influence of urban development density on transit network design with stochastic demand by considering two types of services, rapid transit services, such as rail, and flexible services, such as dial-a-ride shuttles. Rapid transit services operate on fixed routes and dedicated lanes, and with fixed schedules, whereas dial-a-ride services can make use of the existing road network, hence are much more economical to implement. It is obvious that the urban development densities to financially sustain these two service types are different. This study integrates these two service networks into one multi-modal network and then determines the optimal combination of these two service types under user equilibrium (UE) flows for a given urban density. Then we investigate the minimum or critical urban density required to financially sustain the rapid transit line(s). The approach of robust optimization is used to address the stochastic demands as captured in a polyhedral uncertainty set, which is then reformulated by its dual problem and incorporated accordingly. The UE principle is represented by a set of variational inequality (VI) constraints. Eventually, the whole problem is linearized and formulated as a mixed-integer linear program. A cutting constraint algorithm is adopted to address the computational difficulty arising from the VI constraints. The paper studies the implications of three different population distribution patterns, two CBD locations, and produces the resultant sequences of adding more rapid transit services as the population density increases. 相似文献
8.
Mariano Gallo Bruno Montella Luca D’Acierno 《Transportation Research Part C: Emerging Technologies》2011,19(6):1276-1305
In this paper we examine the transit network design problem under the assumption of elastic demand, focusing on the problem of designing the frequencies of a regional metro. In this problem, investments in transit services have appreciable effects on modal split. Neglecting demand elasticity can lead to solutions that may not represent the actual objectives of the design. We propose four different objective functions that can be adopted to assume demand as elastic, considering the costs of all transportation systems (car, bus and rail) as well as the external costs, and we define the constraints of the problem. Heuristic and meta-heuristic solution algorithms are also proposed. The models and algorithms are tested on a small network and on a real-scale network. 相似文献
9.
Two continuum approximation (CA) optimization models are formulated to design city-wide transit systems at minimum cost. Transit routes are assumed to lie atop a city’s street network. Model 1 assumes that the city streets are laid out in ring-radial fashion. Model 2 assumes that the city streets form a grid. Both models can furnish hybrid designs, which exhibit intersecting routes in a city’s central (downtown) district and only radial branching routes in the periphery. Model 1 allows the service frequency and the route spacing at a location to vary arbitrarily with the location’s distance from the center. Model 2 also allows such variation but in the periphery only.The paper shows how to solve these CA optimization problems numerically, and how the numerical results can be used to design actual systems. A wide range of scenarios is analyzed in this way. It is found among other things that in all cases and for both models: (i) the optimal headways and spacings in the periphery increase with the distance from the center; and (ii) at the boundary between the central district and the periphery both, the optimal service frequency and line spacing for radial lines decrease abruptly in the outbound direction. On the other hand Model 1 is distinguished from Model 2 in that the former produces in all cases: (i) a much smaller central district, and (ii) a high frequency circular line on the outer edge of that central district.Parametric tests with all the scenarios further show that Model 1 is consistently more favorable to transit than Model 2. Cost differences between the two designs are typically between 9% and 13%, but can top 21.5%. This is attributed to the manner in which ring-radial networks naturally concentrate passenger’s shortest paths, and to the economies of demand concentration that transit exhibits. Thus, it appears that ring-radial street networks are better for transit than grids.To illustrate the robustness of the CA design procedure to irregularities in real street networks, the results for all the test problems were then used to design and evaluate transit systems on networks of the “wrong” type – grid networks were outfilled with transit systems designed with Model 1 and ring-radial networks designed with Model 2. Cost increased on average by only 2.7%. The magnitude of these deviations suggests that the proposed CA procedures can be used to design transit systems over real street networks when they are not too different from the ideal and that the resulting costs should usually be very close to those predicted. 相似文献
10.
This work describes the calibration of a schedule-based transit assignment inside an iterative microscopic agent-based simulation. The calibration challenge implies that the behavioral rules should be modified in order to move the simulation closer to observed passenger counts. First, route choice set of agents is enriched with travel parameter utilities randomization. Secondly, the calibration interacts directly into the performance evaluation of individual daily plan of activities, so that the plan is also evaluated for its contribution to the count reproduction. In this way, appropriate plans from the calibration perspective can persist along simulation iterations. The Berlin public transport system with day-based counts is used as test scenario. The results show that the calibration approach can work with large scale scenarios, and that it is able to deal with the inter-temporal aspects implied by counts. 相似文献
11.
M. Estrada M. Roca-Riu H. Badia F. Robusté C.F. Daganzo 《Transportation Research Part A: Policy and Practice》2011,45(9):935-950
This paper presents and tests a method to design high-performance transit networks. The method produces conceptual plans for geometric idealizations of a particular city that are later adapted to the real conditions. These conceptual plans are generalizations of the hybrid network concept proposed in Daganzo (2010). The best plan for a specific application is chosen via optimization. The objective function is composed of analytic formulae for a concept’s agency cost and user level of service. These formulae include as parameters key demand-side attributes of the city, assumed to be rectangular, and supply-side attributes of the transit technology. They also include as decision variables the system’s line and stop spacings, the degree to which it focuses passenger trips on the city center, and the service headway. These decision variables are sufficient to define an idealized geometric layout of the system and an operating plan. This layout-operating plan is then used as a design target when developing the real, detailed master plan. Ultimately, the latter is simulated to obtain more accurate cost and level of service estimates.This process has been applied to design a high performance bus (HPB) network for Barcelona (Spain). The idealized solution for Barcelona includes 182 km of one-way infrastructure, uses 250 vehicles and costs 42,489 €/h to build and run. These figures only amount to about one third of the agency resources and cost currently used to provide bus service. A detailed design that resembles this target and conforms to the peculiarities of the city is also presented and simulated. The agency cost and user level of service metrics of the simulated system differ from those of the idealized model by less than 10%. Although the designed and simulated HPB systems provide sub-optimal spatial coverage because Barcelona lacks suitable streets, the level of service is good. Simulations suggest that if the proposed system was implemented side-by-side with the current one, it would capture most of the demand. 相似文献
12.
This paper develops a mathematical program with equilibrium constraints (MPEC) model for the intermodal hub-and-spoke network design (IHSND) problem with multiple stakeholders and multi-type containers. The model incorporates a parametric variational inequality (VI) that formulates the user equilibrium (UE) behavior of intermodal operators in route choice for any given network design decision of the network planner. The model also uses a cost function that is capable of reflecting the transition from scale economies to scale diseconomies in distinct flow regimes for carriers or hub operators, and a disutility function integrating actual transportation charges and congestion impacts for intermodal operators. To solve the MPEC model, a hybrid genetic algorithm (HGA) embedded with a diagonalization method for solving the parametric VI is proposed. Finally, the comparative analysis of the HGA and an exhaustive enumeration algorithm indicates a good performance of the HGA in terms of computational time and solution quality. The HGA is also applied to solve a large-scale problem to show the applicability of the proposed model and algorithm. 相似文献
13.
The rapid expansion of many Chinese cities has put increasing pressure on existing urban transportation systems. Using Baidu users’ location data, this research analyzes the spatial patterns of the transit systems and commuter flows in Wuhan Metropolitan Area, China, and identifies transit deserts affecting low-income commuters. The results show that, first, most transit demand are generated by trips between neighboring communities, while large transit supply tends to occur between distant communities in the region. Second, about 11.21% of low-income commuters are affected by transit deserts in Wuhan Metropolitan Area. In detail, 61.30% of them commute within the city centers and 36.06% of them commute within the suburbs. Only about 2.64% of them actually travel between city centers and suburbs. Third, for low-income suburban commuters, transit deserts occur when they are surrounded by low-density transit infrastructure and low-frequency transit services, which makes it very difficult for them to connect to rest of the region. However, for low-income commuters residing in the city centers, transit deserts are mainly caused by the large numbers of transit-dependent people competing for limited transit supply in the areas. This research explores the relationship between transit systems and commuting demand in a major Chinese metropolitan area. The findings could help guide future transit system planning in China and beyond. 相似文献
14.
Matthew G. Karlaftis Dimitrios Tsamboulas 《Transportation Research Part A: Policy and Practice》2012,46(2):392-402
The need to measure transit system performance along with its various dimensions such as efficiency and effectiveness has led to the development of a wide array of approaches and vast literature. However, depending upon the specific approach used to examine performance, different conclusions are oftentimes reached. Using data from 15 European transit systems for a ten year time period (1990-2000), this paper discusses three important transit performance questions; (i) Do different efficiency assessment methodologies produce similar results? (ii) How are the two basic dimensions of transit performance, namely efficiency and effectiveness, related? and (iii) Are findings regarding organizational regimes (public operations, contracting and so on) sensitive to the methodological specifications employed? Results clearly indicate that efficiency scores and associated recommendations are sensitive to the models used, while efficiency and effectiveness are - albeit weakly - negatively related; these two findings can have far reaching policy implications. 相似文献
15.
Sustainability is a requirement for modern public transportation networks, as these are expected to play a critical role in environment-friendly transportation systems. This paper focuses on developing an efficient model for solving a sustainable oriented variant of the Transit Route Network Design Problem. The model incorporates sustainable design objectives, considers emission-free (electric) vehicles and introduces a direct route design approach with route structure and directness control. An application in a real world case, highlights the performance and benefits of the proposed model. 相似文献
16.
In this paper, we study the transit itinerary planning problem with incorporation of randomness that arises in transit vehicle arrival/departure and passenger transfer. We investigate two approaches to address the uncertainty: a minmax robust approach and an expectation-based probabilistic approach. We adapt a two-phase framework to mitigate computational challenges in large-scale planning problems. In phase I, we compute candidate route connections offline and store them into a database. Although expensive computation is required in phase I, it is typically performed only once over a period of time (e.g., half a year). Phase II takes place whenever a request is received, for which we query candidate route connections from the database, build a stochastic shortest-path model based on either approach listed above, and solve the model in real time. With phase I, computational requirement in phase II is substantially reduced so as to ensure real-time itinerary planning. To demonstrate the practical feasibility of our two-phase approach, we conduct extensive case studies and sensitivity analyses based on a large real-world transit network. 相似文献
17.
The research presented in this paper explores the context, method, and value of focus group research in transit needs assessments. Group participatory research can generate data that are not easily obtained by other methods. The paper focuses on lessons from three Nebraska communities whose transit disadvantaged rely on community-based paratransit services. Because of the size of the paratransit population and the inability to control who showed up to the focus group sessions, a modified group research protocol was adopted in order to garner information from whomever attended the session. The population parameters and the number of people at the meetings were anticipated by the researchers and mitigated by incorporating nominal group techniques. Research findings from the focus group sessions are discussed paying particular attention to the candid and policy-specific comments made by the focus group participants. The paper concludes with an application of focus group research in transit planning. 相似文献
18.
This paper investigates punctuality at bus stops. Although it is typically evaluated from the point of view of bus operators, it must also account for users, as required in recent service quality norms. Therefore, evaluating punctuality at bus stops is highly important, but may also be a complex task, because data on both bus arrivals (or departures) and users must be taken into account and processed. Data on buses can be collected by Automatic Vehicle Location (AVL) systems, but several challenges must be addressed in order to use them effectively. Passengers data at bus stops cannot be derived from AVL, but they can be used to derive passenger patterns and need to be integrated into processed AVL data. This paper proposes a new punctuality measure defined as the fraction of passengers who will be served within an acceptably short interval after they arrive. A method is proposed to determine this measure: it provides (i) several rules to handle AVL collected data, (ii) a procedure integrating processed AVL data and potential passengers’ patterns and (iii) a hierarchical process to perform the punctuality measure on each bus route direction of a transit network, as well as for every bus stop and time period. The paper illustrates the experimentation of this method on more than 4,000,000 data of a real bus operator and represents outcomes by easy-to-read control dashboards. 相似文献
19.
This paper proposes a novel heuristic to solve the network design problem for public transport in small-medium size cities. Such cities can be defined as those with a diameter of a few kilometers with up to a few hundred thousand residents. These urban centers present a specific spatial configuration affecting the land use and mobility system. Transportation demand is widespread in origin and concentrated in a small number of attraction points close to each other. This particular structure of demand (‘many-to-few’) suggests the need for specific methodologies for the design of a transit system at a network level. In this paper, such design methodologies are defined in terms of models and solution procedures and tested on a selected case study. The solution methods show promising results. The key variables of the model are the routes and their frequencies. The constraints of the problem affect the overall demand to be served, the quality of the proposed service (transfer, load factors) and the definition of routes. 相似文献
20.
The improvement and expansion of public transport is an increasingly important solution to the high congestion costs and worsening environmental impacts of the car dominated transport systems seen in many cities today. The intelligent design of stop locations is one way to improve the quality of PT and thereby improve its ridership. Stop placement is a relatively complex task as it involves a trade-off between two competing goals; accessibility and operation; however this trade-off can be made explicit using an appropriate mathematical model. Many such models have been developed in the literature, however none consider the effects of uneven topography. Topography is an important but often neglected factor in the design of public transportation systems, with the potential to have a significant impact on the accessibility, operation and planning of a transit service. In this work a mathematical modelling approach to bus stop placement is developed which includes considerations of uneven topography in three ways; (1) Its effect on walking speed; (2) Its impact on the attractiveness of an access path to a transit service; and (3) Its effect on acceleration rates at stops. Because of the complexity of the model developed, a heuristic evolutionary algorithm’ is employed to approximate an optimal solution to the model. Finally, the model and solution method are applied to a case study in the Auckland CBD area in New Zealand. 相似文献