首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the impact of cordon-based congestion pricing scheme on the mode-split of a bimodal transportation network with auto and rail travel modes. For any given toll-charge pattern, its impact on the mode-split can be estimated by solving a combined mode-split and traffic-assignment problem. Using a binary logit model for the mode-split, the combined problem is converted into a traffic-assignment problem with elastic demand. Probit-based stochastic user equilibrium (SUE) principle is adopted for this traffic-assignment problem, and a continuously distributed value of time (VOT) is assumed to convert the toll charges and transit fares into time-units. This combined mode-split and traffic-assignment problem is then formulated as a fixed-point model, which can be solved by a convergent Cost Averaging method. The combined mode-split and traffic-assignment problem is then used to analyze a multimodal toll design problem for cordon-based congestion pricing scheme, with the aim of increasing the mode-share of public transport system to a targeted level. Taking the fixed-point model as a constraint, the multimodal toll design problem is thus formulated as a mathematical programming with equilibrium constraints (MPEC) model. A genetic algorithm (GA) is employed to solve this MPEC model, which is then numerical validated by a network example.  相似文献   

2.
This paper presents a feeder-bus route design model, capable of minimizing route length, minimizing maximum route travel time of planned routes, and maximizing service coverage for trip generation. The proposed model considers constraints of route connectivity, subtour prevention, travel time upper bound of a route, relationships between route layout and service coverage, and value ranges of decision variables. Parameter uncertainties are dealt with using fuzzy numbers, and the model is developed as a multiobjective programming problem. A case study of a metro station in Taichung City, Taiwan is then conducted. Next, the programming problem in the case study is solved, based on the technique for order preference by similarity to ideal solution approach to obtain the compromise route design. Results of the case study confirm that the routes of the proposed model perform better than existing routes in terms of network length and service coverage. Additionally, increasing the number of feeder-bus routes decreases maximum route travel time, increases service coverage, and increases network length. To our knowledge, the proposed model is the first bus route design model in the literature to consider simultaneously various stakeholder needs and support for bus route planners in developing alternatives for further evaluation efficiently and systematically.  相似文献   

3.
4.
The main purpose of this study is to design a transit network of routes for handling actual-size road networks. This transit-network design problem is known to be complex and cumbersome. Thus, a heuristic methodology is proposed, taking into account the major concerns of transit authorities such as budget constraints, level-of-service standards and the attractiveness of the transit routes. In addition, this approach considers other important aspects of the problem including categorization of stops, multiclass of transit vehicles, hierarchy planning, system capacity (which has been largely ignored in past studies) and the integration between route-design and frequency-setting analyses. The process developed starts with the construction of a set of potential stops using a clustering concept. Then, by the use of Newton gravity theory and a special shortest-path procedure, a set of candidate routes is formed, categorized by hierarchy (mass, feeder, local routes). In the last step of the process a metaheuristic search engine is launched over the candidate routes, incorporating budgetary constraints, until a good solution is found. The algorithm was tested on the actual-size transit network of the city of Winnipeg; the results show that under the same conditions (budget and constraints) the proposed set of routes resulted in a reduction of 14% of total travel time compared to the existing transit network. In addition the methodology developed is compared favorably with other studies using the transit network of Mandl benchmark. The generality of the methodology was tested on the recent real dataset (pertaining to the year 2010) of the larger city of Chicago, in which a more efficient and optimized scheme was proposed for the existing rail system.  相似文献   

5.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Dispatchers in many public transit companies face the daily problem of assigning available buses to bus routes under conditions of bus shortages. In addition to this, weather conditions, crew absenteeism, traffic accidents, traffic congestion and other factors lead to disturbances of the planned schedule. We propose the Bee Colony Optimization (BCO) algorithm for mitigation of bus schedule disturbances. The developed model takes care of interests of the transit operator and passengers. The model reassigns available buses to bus routes and, if it is allowed, the model simultaneously changes the transportation network topology (it shortens some of the planned bus routes) and reassigns available buses to a new set of bus routes. The model is tested on the network of Rivera (Uruguay). Results obtained show that the proposed algorithm can significantly mitigate disruptions.  相似文献   

7.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions.  相似文献   

8.
This paper describes the bus network design problem, summarizes the different approaches that have been proposed for its solution and proposes a new approach incorporating some of the positive aspects of prior work. The proposed approach is intended to be easier to implement and less demanding in terms of both data requirements and analytical sophistication than previous methods. An algorithm is presented that can be used to design new bus routes taking account of both passenger and operator interests; however, this algorithm focuses on only a single component of the overall bus operations planning process described in this paper.  相似文献   

9.
Empirical studies have shown that demand for multimodal transport systems is highly correlated with activity schedules of individuals. Nonetheless, existing analytical equilibrium models of multimodal systems have only considered trip-based demand. We propose a new market equilibrium model that is sensitive to traveler activity schedules and system capacities. The model is based on a constrained mixed logit model of activity schedule choice, where each schedule in the choice set is generated with a multimodal extension of the household activity pattern problem. The extension explicitly accounts for both passenger choices of activity participation and multimodal choices like public transit, walking, and vehicle parking. The market equilibrium is achieved with Lagrangian relaxation to determine the optimal dual price of the capacity constraint, and a method of successive averages with column generation finds an efficient choice set of activity schedules to assign flows over the dynamic network load capacities. An example illustrates the model and algorithm, effects similar to Vickrey’s morning commute model can be observed as a special case. A case study of the Oakville Go Transit station access “last mile” problem in the Greater Toronto Area is conducted with 166 survey samples reflecting 3680 individuals. Results suggest that a $10 fixed parking fee at Oakville station would lead to a reduction of access auto share from 54.8% to 49.5%, an increase in access transit share from 20.7% to 25.9%, and a disutility increase of 11% for the of single-activity residents of Oakville.  相似文献   

10.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

11.
In this paper, we propose a link-node complementarity model for the basic deterministic dynamic user equilibrium (DUE) problem with single-user-class and fixed demands. The model complements link-path formulations that have been widely studied for dynamic user equilibria. Under various dynamic network constraints, especially the exact flow propagation constraints, we show that the continuous-time dynamic user equilibrium problem can be formulated as an infinite dimensional mixed complementarity model. The continuous-time model can be further discretized as a finite dimensional non-linear complementarity problem (NCP). The proposed discrete-time model captures the exact flow propagation constraints that were usually approximated in previous studies. By associating link inflow at the beginning of a time interval to travel times at the end of the interval, the resulting discrete-time model is predictive rather than reactive. The solution existence and compactness condition for the proposed model is established under mild assumptions. The model is solved by an iterative algorithm with a relaxed NCP solved at each iteration. Numerical examples are provided to illustrate the proposed model and solution approach. We particularly show why predictive DUE is preferable to reactive DUE from an algorithmic perspective.  相似文献   

12.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization.  相似文献   

13.
This paper develops an integrated model to characterize the market penetration of autonomous vehicles (AVs) in urban transportation networks. The model explicitly accounts for the interplay among the AV manufacturer, travelers with heterogeneous values of travel time (VOTT), and road infrastructure capacity. By making in-vehicle time use more leisurely or productive, AVs reduce travelers’ VOTT. In addition, AVs can move closer together than human-driven vehicles because of shorter safe reaction time, which leads to increased road capacity. On the other hand, the use of AV technologies means added manufacturing cost and higher price. Thus, traveler adoption of AVs will trade VOTT savings with additional out-of-pocket cost. The model is structured as a leader (AV manufacturer)-follower (traveler) game. Given the cost of producing AVs, the AV manufacturer sets AV price to maximize profit while anticipating AV market penetration. Given an AV price, the vehicle and routing choice of heterogeneous travelers are modeled by combining a multinomial logit model with multi-modal multi-class user equilibrium (UE). The overall problem is formulated as a mathematical program with complementarity constraints (MPCC), which is challenging to solve. We propose a solution approach based on piecewise linearization of the MPCC as a mixed-integer linear program (MILP) and solving the MILP to global optimality. Non-uniform distribution of breakpoints that delimit piecewise intervals and feasibility-based domain reduction are further employed to reduce the approximation error brought by linearization. The model is implemented in a simplified Singapore network with extensive sensitivity analyses and the Sioux Falls network. Computational results demonstrate the effectiveness and efficiency of the solution approach and yield valuable insights about transportation system performance in a mixed autonomous/human driving environment.  相似文献   

14.
Creating a bus network that covers passenger demand conveniently is an important ingredient of the transit operations planning process. Certainly determination of optimal bus network is highly sensitive to any change of demand, thus it is desirable not to consider average or estimated figures, but to take into account prudently the variations of the demand. Many cities worldwide experience seasonal demand variations which naturally have impact on the convenience and optimality of the transit service. That is, the bus network should provide convenient service across all seasons. This issue, addressed in this work, has not been thoroughly dealt with neither in practice nor in the literature. Analyzing seasonal transit demand variations increases further the computational complexity of the bus-network design problem which is known as a NP-hard problem. A solution procedure using genetic algorithm efficiently, with a defined objective-function to attain the optimization, is proposed to solve this cumbersome problem. The method developed is applied to two benchmarked networks and to a case study, to the city of Mashhad in Iran with over 3.2 million residents and 20 million visitors annually. The case study, characterized by a significant seasonal demand variation, demonstrates how to find the best single network of bus routes to suit the fluctuations of the annual passenger demand. The results of comparing the proposed algorithm to previously developed algorithms show that the new development outperforms the other methods between 1% and 9% in terms of the objective function values.  相似文献   

15.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme.  相似文献   

16.
The use of fossil fuels in transportation generates harmful emissions that accounts for nearly half of the total pollutants in urban areas. Dealing with this issue, local authorities are dedicating specific efforts to seize the opportunity offered by new fuels and technological innovations in achieving a cleaner urban mobility. In fact, authorities are improving environmental performances of their public transport fleet by procuring cleaner vehicles, usually called low and zero emission vehicles (LEV and ZEV, respectively). Nevertheless there seems to be a lack of methodologies for supporting stakeholders in decisions related to the introduction of green vehicles, whose allocation should be performed since the network design process in order to optimize their available green capacity.In this paper, the problem of clean vehicle allocation in an existing public fleet is faced by introducing a method for solving the transit network design problem in a multimodal, demand elastic urban context dealing with the impacts deriving from transportation emissions.The solving procedure consists of a set of heuristics which includes a routine for route generation and a genetic algorithm for finding a sub-optimal set of routes with the associated frequencies.  相似文献   

17.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

18.
This paper proposes a bilevel formulation for solving the Bus Network Design Problem (BNDP) of interurban services entering a major city. It is focused in interurban services because it is a growing problem in most of major cities, yet new in the literature. The layout of interurban bus routes and the locations of transfer stations in the main city are the key factors to provide a competitive public transportation service to commuters in a metropolitan area. The number of commuters in huge urban concentrations is growing due to the difficulties of living near the city center. The objective function of the first level is defined with the aim of reducing user and agency costs. In the second level the performance of users is addressed. Furthermore, a local search method based on the Tabu Search algorithm was carried out to guide the exploration in the solution domain. The results obtained in a set of test problems have demonstrated that the restart parameters of the algorithm play a significant role in the efficiency of the algorithm. Finally, implementation in the large network of Barcelona (Spain) reduces the total cost by 5% with regard to the present situation.  相似文献   

19.
Previous research has combined automated fare-collection (AFC) and automated vehicle-location (AVL) data to infer the times and locations of passenger origins, interchanges (transfers), and destinations on multimodal transit networks. The resultant origin–interchange–destination flows (and the origin–destination (OD) matrices that comprise those flows), however, represent only a sample of total ridership, as they contain only those journeys made using the AFC payment method that have been successfully recorded or inferred. This paper presents a method for scaling passenger-journey flows (i.e., linked-trip flows) using additional information from passenger counts at each station gate and bus farebox, thereby estimating the flows of non-AFC passengers and of AFC passengers whose journeys were not successfully inferred.The proposed method is applied to a hypothetical test network and to AFC and AVL data from London’s multimodal public transit network. Because London requires AFC transactions upon both entry and exit for rail trips, a rail-only OD matrix is extracted from the estimated multimodal linked-trip flows, and is compared to a rail OD matrix generated using the iterative proportional fitting method.  相似文献   

20.
Public transit structure is traditionally designed to contain fixed bus routes and predetermined bus stations. This paper presents an alternative flexible-route transit system, in which each bus is allowed to travel across a predetermined area to serve passengers, while these bus service areas collectively form a hybrid “grand” structure that resembles hub-and-spoke and grid networks. We analyze the agency and user cost components of this proposed system in idealized square cities and seek the optimum network layout, service area of each bus, and bus headway, to minimize the total system cost. We compare the performance of the proposed transit system with those of comparable systems (e.g., fixed-route transit network and taxi service), and show how each system is advantageous under certain passenger demand levels. It is found out that under low-to-moderate demand levels, the proposed flexible-route system tends to have the lowest system cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号