首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A mesoscopic pedestrian model is proposed, considering pedestrians as individuals and describing their movement by means of aggregate density-flow relationships. The model builds on a stochastic process, describing transition rates among adjacent sites on a lattice. Each lattice can contain several pedestrians. The approach is minimal and fast to simulate, and, by construction, capable of capturing population heterogeneity as well as variability in walking behaviour and en-route path choice. The model is more efficient than microscopic models, and potentially more accurate than macroscopic ones. We calibrate and validate the model using real data and carry out several numerical experiments to present its key properties and possible applications for simulation of large-scale scenarios.  相似文献   

2.
This study analyzes pedestrian receptivity toward fully autonomous vehicles (FAVs) by developing and validating a pedestrian receptivity questionnaire for FAVs (PRQF). The questionnaire included sixteen survey items based on attitude, social norms, trust, compatibility, and system effectiveness. 482 Participants from the United States (273 males and 209 females, age range: 18–71 years) responded to an online survey. A principal component analysis determined three subscales describing pedestrians’ receptivity toward FAVs: safety, interaction, and compatibility. This factor structure was verified by a confirmatory factor analysis and reliability of each subscale was confirmed (0.7 < Cronbach’s alpha < 0.9). Regression analyses investigated associations with scenario-based responses to the three PRQF subscale scores. Pedestrians’ intention to cross the road in front of FAVs was significantly predicted by both safety and interaction scores, but not by the compatibility score. Accepting FAVs in the existing traffic system was predicted by all three subscale scores. Demographic influence on the receptivity revealed that males and younger respondents were more receptive toward FAVs. Similarly, those from urban areas and people with higher personal innovativeness showed higher receptivity. Finally, a significant effect of pedestrian behavior (as measured by the pedestrian behavior questionnaire) on receptivity is explored. People who show positive behavior believed that the addition of FAVs will improve overall traffic safety. Those who show higher violation, lapse and aggression scores, were found to feel more confident about crossing the road in front of a FAV. This questionnaire can be a potential research tool for designing and improving FAVs for road-users outside the vehicles.  相似文献   

3.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

4.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year.  相似文献   

5.
Prior research on ultrafine particles (UFP) emphasizes that concentrations are especially high on-highway, and that time on highways contribute disproportionately to total daily exposures. This study estimates individual and population exposure to ultra-fine particles in the Minneapolis – St. Paul (Twin Cities) metropolitan area, Minnesota. Our approach combines a real-time model of on-highway size-resolved UFP concentrations (32 bins, 5.5–600 nm); individual travel patterns, derived from GPS travel trajectories collected in 144 individual vehicles (123 h at locations with UFP estimates among 624 vehicle-hours of travel); and, loop-detector data, indicating real-time traffic conditions throughout the study area. The results provide size-resolved spatial and temporal patterns of exposure to UFP among freeway users. On-highway exposures demonstrate significant variability among users, with highest concentrations during commuting peaks and near highway interchanges. Findings from this paper could inform future epidemiological studies in on-road exposure to UFP by linking personal exposures to traffic conditions.  相似文献   

6.
Microsimulation of urban systems evolution requires synthetic population as a key input. Currently, the focus is on treating synthesis as a fitting problem and thus various techniques have been developed, including Iterative Proportional Fitting (IPF) and Combinatorial Optimization based techniques. The key shortcomings of these procedures include: (a) fitting of one contingency table, while there may be other solutions matching the available data (b) due to cloning rather than true synthesis of the population, losing the heterogeneity that may not have been captured in the microdata (c) over reliance on the accuracy of the data to determine the cloning weights (d) poor scalability with respect to the increase in number of attributes of the synthesized agents. In order to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) simulation based approach. Partial views of the joint distribution of agent’s attributes that are available from various data sources can be used to simulate draws from the original distribution. The real population from Swiss census is used to compare the performance of simulation based synthesis with the standard IPF. The standard root mean square error statistics indicated that even the worst case simulation based synthesis (SRMSE = 0.35) outperformed the best case IPF synthesis (SRMSE = 0.64). We also used this methodology to generate the synthetic population for Brussels, Belgium where the data availability was highly limited.  相似文献   

7.
This article presents a fuel consumption model, SEFUM (Semi Empirical Fuel Use Modeling), and its comparison with three models from the literature on a 600 km experimental database. This model is easy to calibrate with only a few required parameters that are provided by car manufacturers. The test database has been built from 21 drivers who drove in two conditions (normal and ecodriving) on a 15 km trip. For the model evaluation, three indicators have been selected: instantaneous fuel use root mean square error, cumulated error and computation time in order to evaluate the accuracy both in cumulated and instantaneous fuel use and to estimate computation time of each model. Results tend to prove that the model is able to compute rapidly (maximum of 1500 simulated kilometers under Matlab) in comparison to all other models while ensuring a high accuracy and precision for cumulated and instantaneous fuel use.  相似文献   

8.
Smart card data are increasingly used for transit network planning, passengers’ behaviour analysis and network demand forecasting. Public transport origin–destination (O–D) estimation is a significant product of processing smart card data. In recent years, various O–D estimation methods using the trip-chaining approach have attracted much attention from both researchers and practitioners. However, the validity of these estimation methods has not been extensively investigated. This is mainly because these datasets usually lack data about passengers’ alighting, as passengers are often required to tap their smart cards only when boarding a public transport service. Thus, this paper has two main objectives. First, the paper reports on the implementation and validation of the existing O–D estimation method using the unique smart card dataset of the South-East Queensland public transport network which includes data on both boarding stops and alighting stops. Second, the paper improves the O–D estimation algorithm and empirically examines these improvements, relying on this unique dataset. The evaluation of the last destination assumption of the trip-chaining method shows a significant negative impact on the matching results of the differences between actual boarding/alighting times and the public transport schedules. The proposed changes to the algorithm improve the average distance between the actual and estimated alighting stops, as this distance is reduced from 806 m using the original algorithm to 530 m after applying the suggested improvements.  相似文献   

9.
Limited pedestrian behavior models shed light on the case at signalized crosswalk, where pedestrian behavior is characterized by group or individual evasion with surrounding pedestrians, collision avoidance with conflicting vehicles, and response to signal control and crosswalk boundary. This study fills this gap by developing a microscopic simulation model for pedestrian behavior analysis at signalized intersection. The social force theory has been employed and adjusted for this purpose. The parameters, including measurable and non-measurable ones, are either directly estimated based on observed dataset or indirectly derived by maximum likelihood estimation. Last, the model performance was confirmed in light of individual trajectory comparison between estimation and observation, passing position distribution at several cross-sections, collision avoidance behavior with conflicting vehicles, and lane-formation phenomenon. The simulation results also concluded that the model enables to visually represent pedestrian crossing behavior as in the real world.  相似文献   

10.
Driver sleepiness contributes to a considerable proportion of road accidents, and a fit-for-duty test able to measure a driver’s sleepiness level might improve traffic safety. The aim of this study was to develop a fit-for-duty test based on eye movement measurements and on the sleep/wake predictor model (SWP, which predicts the sleepiness level) and evaluate the ability to predict severe sleepiness during real road driving. Twenty-four drivers participated in an experimental study which took place partly in the laboratory, where the fit-for-duty data were acquired, and partly on the road, where the drivers sleepiness was assessed. A series of four measurements were conducted over a 24-h period during different stages of sleepiness. Two separate analyses were performed; a variance analysis and a feature selection followed by classification analysis. In the first analysis it was found that the SWP and several eye movement features involving anti-saccades, pro-saccades, smooth pursuit, pupillometry and fixation stability varied significantly with different stages of sleep deprivation. In the second analysis, a feature set was determined based on floating forward selection. The correlation coefficient between a linear combination of the acquired features and subjective sleepiness (Karolinska sleepiness scale, KSS) was found to be R = 0.73 and the correct classification rate of drivers who reached high levels of sleepiness (KSS  8) in the subsequent driving session was 82.4% (sensitivity = 80.0%, specificity = 84.2% and AUC = 0.86). Future improvements of a fit-for-duty test should focus on how to account for individual differences and situational/contextual factors in the test, and whether it is possible to maintain high sensitive/specificity with a shorter test that can be used in a real-life environment, e.g. on professional drivers.  相似文献   

11.
Existing methods for calibrating link fundamental diagrams (FDs) often focus on a limited number of links and use grouping strategies that are largely dependent on roadway physical attributes alone. In this study, we propose a big data-driven two-stage clustering framework to calibrate link FDs for freeway networks. The first stage captures, under normal traffic state, the variations of link FDs over multiple days based on which links are clustered in the second stage. Two methods, i.e. the standard k-means algorithm combined with hierarchical clustering and a modified hierarchical clustering based on the Fréchet distance, are applied in the first stage to obtain the FD parameter matrix for each link. The calibrated matrices are input into the second stage where the modified hierarchical clustering is re-employed as a static approach resulting in multiple clusters of links. To further consider the variations of link FDs, the static approach is extended by modifying the similarity measure through the principle component analysis (PCA). The resulting multivariate time-series clustering models the distributions of the FD parameters as a dynamic approach. The proposed framework is applied on the Melbourne freeway network using one-year worth of loop detector data. Results have shown that (a) similar roadway physical attributes do not necessarily result in similar link FDs, (b) the connectivity-based approach performs better in clustering link FDs as compared with the centroid-based approach, and (c) the proposed framework helps achieving a better understanding of the spatial distribution of links with similar FDs and the associated variations and distributions of the FD parameters.  相似文献   

12.
13.
Very few studies examine the costs associated with general aviation accidents. Given the large number of general aviation operations as well as the large number of fatalities and injuries attributed to general aviation accidents in the United States, understanding the costs to society is of great importance. This study estimates the costs associated with general aviation accidents in the United States. The direct costs are estimated and the indirect costs are estimated via the human capital approach in addition to the willingness-to-pay approach. The average annual accident costs attributed to general aviation are found to be $1.64 billion and $4.64 billion (2011 US$) utilizing the human capital approach and willingness-to-pay approach, respectively. These values appear to be fairly robust when subjected to a sensitivity analysis.  相似文献   

14.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

15.
This paper examines the relevance of incorporating comprehensive life-cycle environmental data into the design and management of pedestrian pavements to minimize the impact on the built environment. The overall primary energy demand and global warming potential of concrete, asphalt and granite sidewalks are assessed. A design with a long functional lifetime reduces its overall primary energy demand and global warming potential due to lower maintenance and repair requirements. However, long-lived construction solutions do not ensure a lower life-cycle primary energy demand and global warming potential than for shorter-lived designs; these values depend on the environmental suitability of the materials chosen for paving. Asphalt sidewalks reduce long-term global warming potential under exposure conditions where the functional lifetime of the pavements is less than 15 years. In places where it is known that a concrete sidewalk can have a life of at least 40 years, a concrete sidewalk is the best for minimizing both long-term primary energy demand and global warming potential. Granite sidewalks are the largest energy consumers and greenhouse gas contributors.  相似文献   

16.
Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium value g1 of the net headway g with zero speed-difference Δv between the following and the lead vehicle. However, it is well-known and additionally demonstrated by data in this paper, that the fluctuations are much larger than these models predict. Typically, the fluctuation in speed difference is around ±2 m/s, while the fluctuation in the net time headway T = g/v can be as big as one or even two seconds, which is as large as the mean time headway itself. By analyzing data from loop detectors as well as data from vehicle trajectories, evidence is provided that this randomness is not due to driver heterogeneity, but can be attributed to an internal stochasticity of the driver itself. A final model-based analysis supports the hypothesis, that the preferred headway of the driver is the parameter that is not kept constant but fluctuates strongly, thus causing the even macroscopically observable randomness in traffic flow.  相似文献   

17.
This paper considers the problem of short to mid-term aircraft trajectory prediction, that is, the estimation of where an aircraft will be located over a 10–30 min time horizon. Such a problem is central in decision support tools, especially in conflict detection and resolution algorithms. It also appears when an air traffic controller observes traffic on the radar screen and tries to identify convergent aircraft, which may be in conflict in the near future. An innovative approach for aircraft trajectory prediction is presented in this paper. This approach is based on local linear functional regression that considers data preprocessing, localizing and solving linear regression using wavelet decomposition. This algorithm takes into account only past radar tracks, and does not use any physical or aeronautical parameters. This approach has been successfully applied to aircraft trajectories between several airports on the data set that is one year air traffic over France. The method is intrinsic and independent from airspace structure.  相似文献   

18.
Although various theories have been adopted to develop reliable pedestrian walking models, a limited effort has been made to calibrate them rigorously based on individual trajectories. Most researchers have validated their models by comparing observed and estimated traffic flow parameters such as speed, density, and flow rate, or replaced the validation by visual confirmation of some well-known phenomena such as channelization and platooning. The present study adopted maximum likelihood estimation to calibrate a social-force model based on the observed walking trajectories of pedestrians. The model was assumed to be made up of five components (i.e., inertia, desired direction, leader–follower relationship, collision avoidance, and random error), and their corresponding coefficients represented relative sensitivity. The model also included coefficients for individual-specific characteristics and for a distance-decay relationship between a pedestrian and his/her leaders or colliders. The calibration results varied with the two density levels adopted in the present study. In the case of high density, significant coefficient estimates were found with respect to both the leader–follower relationship and collision avoidance. Collision avoidance did not affect the pedestrian’s walking behavior for the low-density case due to channelization. The distance limit was confirmed, within which a pedestrian is affected by neighbors. At the low-density level, by comparison with women, men were found to more actively follow leaders, and pedestrians walking in a party were found to be less sensitive to the motion of leaders at the high-density level.  相似文献   

19.
In this paper, we propose a method of modeling free flow speed from the viewpoint of hydroplaning. First, the lift forces for different water depths were estimated using Bernoulli’s equation. Compared with the result of the experimental test performed by the Japan Automobile Research Institute, the hydrodynamic pressure coefficient was determined to be 0.03 (tf s2/m4). The validation of the predicted lift force is found in another published paper. A very good match is found between the computed values by the proposed numerical model and the data in other published papers. Then, the loss of contact force is considered to evaluate the hydroplaning performance of a tire. To simulate the hydroplaning speed, a tire-sliding model was utilized to obtain the traction and friction forces between the road surface and the tire. The observation data obtained in Japan in 2009 is compared with the physically computed hydroplaning speed, yielding the conclusion that the traction force at the measured desired speed is, on average, 23.4% of the traction force at hydroplaning speed. The analytical model offers a useful tool to quantitatively show that the free flow speed changes as the water depth increase.  相似文献   

20.
Among the natural hazards that threaten transportation infrastructure, flooding represents a major hazard to highways as it challenges their design, operation, efficiency and safety. In extreme cases, it may lead to massive obstruction of traffic and direct damages to the road structures themselves and indirect damages to the economic activity and development of the region. To enable the prevention of such consequences, and the proposition of adaptive measures for existing infrastructure, this paper presents an integrated framework to identify the most vulnerable points to flooding along a highway. This is done through the combination of remote sensing information (e.g. LiDAR based Digital Elevation Model, satellite imagery), a high-quality dataset, and a quasi-2D hydrodynamic model. The forcing condition is defined using a hyetograph associated to a storm with duration of 1 day and return period of 100 years. The selected highway is located in the Mexican state of Tabasco, where extreme precipitation events and floods are frequent. Results demonstrate the ability of the methodology to identify critical water levels along the road (h > 1.50 m) at those locations where flooding has been experienced, as well as points of inspection for the highway drainage. These locations were visited in the field and maintenance problems were detected that do increase its level of exposure. We show that this framework is useful for the generation of a flood management strategy to the analyzed highway, which includes an optimum location of adaptive measures to an anticipated more intense future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号