首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles.  相似文献   

2.
Plug-in hybrid electric vehicles (PHEVs) can provide many of the benefits of battery electric vehicles (BEVs), such as reduced petroleum consumption and greenhouse gas emissions, without the “range anxiety” that can accompany driving a vehicle with limited range when there are few charging opportunities. However, evidence indicates that PHEVs are often plugged in more frequently than BEVs in practice. This is somewhat paradoxical: drivers for whom plugging in is optional tend to do so more frequently than those for whom it is necessary. This has led to the coining of a new term – “gas anxiety” – to describe the apparent desire of PHEV drivers to avoid using gasoline. In this paper, we analyze the variables influencing the charging choices of PHEV owners, testing whether drivers express preferences consistent with the concept of gas anxiety. We analyze data collected in a web-based stated preference survey using a latent class logit model. The results reveal two classes of decision-making patterns among the survey respondents: (1) those who weight the cost of gasoline and the cost of recharging approximately equally (the cost-minimizing class), and (2) those who weight the cost gasoline more heavily than the cost of recharging (the gas anxiety class). Respondents in the gas anxiety class expressed a willingness to recharge at a charging station even when doing so would cost approximately four times as much as the cost of the gasoline avoided. While the gas anxiety class represents the majority of our sample, more recent PHEV adopters are more likely to be in the cost-minimizing class. Looking forward, this suggests that public charging station operators may need to price charging competitively with gasoline on a per-mile basis to attract PHEV owners.  相似文献   

3.
Current car technologies will not solve upcoming challenges of mitigating greenhouse gas emissions in road transport. Projections of the market penetration by alternative drive train technologies are controversial regarding both forecast market shares and applied scientific methods. Accepting this latter challenge, we provide a (so far missing) overview of methods applied in this field and give some recommendations for further work. Our focus is to classify the applied methods into a convenient pattern and to analyse models from the recent scientific literature which consider the electrification of light-duty vehicles. We differentiate the following bottom-up approaches: Econometric models with disaggregated data (such as discrete choice), and agent-based simulation models. The group of top-down models are subdivided into econometric models with aggregated data (e.g. vehicle stock data), system dynamics, as well as integrated assessment models with general equilibrium models. It becomes obvious that some methods have a stronger methodological background whereas others require comprehensive data sets or can be combined more flexibly with other methods. Even though there is no dominant method, we can identify a trend in the literature towards data-driven hybrid approaches, which considers micro and macro aspects influencing the market penetration of electric vehicles.  相似文献   

4.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.  相似文献   

5.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

6.
We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies in China and the U.S. using data from choice-based conjoint surveys fielded in 2012–2013 in both countries. We find that with the combined bundle of attributes offered by vehicles available today, gasoline vehicles continue in both countries to be most attractive to consumers, and American respondents have significantly lower relative willingness-to-pay for BEV technology than Chinese respondents. While U.S. and Chinese subsidies are similar, favoring vehicles with larger battery packs, differences in consumer preferences lead to different outcomes. Our results suggest that with or without each country’s 2012–2013 subsidies, Chinese consumers are willing to adopt today’s BEVs and mid-range PHEVs at similar rates relative to their respective gasoline counterparts, whereas American consumers prefer low-range PHEVs despite subsidies. This implies potential for earlier BEV adoption in China, given adequate supply. While there are clear national security benefits for adoption of BEVs in China, the local and global social impact is unclear: With higher electricity generation emissions in China, a transition to BEVs may reduce oil consumption at the expense of increased air pollution and/or greenhouse gas emissions. On the other hand, demand from China could increase global incentives for electric vehicle technology development with the potential to reduce emissions in countries where electricity generation is associated with lower emissions.  相似文献   

7.
Plug-in hybrid electric vehicles (PHEVs) can be powered by gasoline, grid electricity, or both. To explore potential PHEV energy impacts, a three-part survey instrument collected data from new vehicle buyers in California. We combine the available information to estimate the electricity and gasoline use under three recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles. Using three scenarios to represent plausible conditions on PHEV drivers’ recharge patterns (immediate and unconstrained, universal workplace access, and off-peak only), tradeoffs are described between the magnitude and timing of PHEV electricity use. PHEV electricity use could be increased through policies supporting non-home recharge opportunities, but this increase occurs during daytime hours and could contribute to peak electricity demand. Deferring all recharging to off-peak hours could eliminate all additions to daytime electricity demand from PHEVs, although less electricity is used and less gasoline displaced.  相似文献   

8.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

9.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

10.
Electric vehicles (EVs) are promising alternative to conventional vehicles, due to their low fuel cost and low emissions. As a subset of EVs, plug-in hybrid electric vehicles (PHEVs) backup batteries with combustion engines, and thus have a longer traveling range than battery electric vehicles (BEVs). However, the energy cost of a PHEV is higher than a BEV because the gasoline price is higher than the electricity price. Hence, choosing a route with more charging opportunities may result in less fuel cost than the shortest route. Different with the traditional shortest-path and shortest-time routing methods, we propose a new routing choice with the lowest fuel cost for PHEV drivers. Existing algorithms for gasoline vehicles cannot be applied because they never considered the regenerative braking which may result in negative energy consumption on some road segments. Existing algorithms for BEVs are not competent too because PHEVs have two power sources. Thus, even if along the same route, different options of power source will lead to different energy consumption. This paper proposes a cost-optimal algorithm (COA) to deal with the challenges. The proposed algorithm is evaluated using real-world maps and data. The results show that there is a trade-off between traveling cost and time consumed when driving PHEVs. It is also observed that the average detour rate caused by COA is less than 14%. Significantly, the algorithm averagely saves more than 48% energy cost compared to the shortest-time routing.  相似文献   

11.
Powertrain electrification is currently the best alternative to ensure sustainable energy efficient personal mobility, increasing the integration of intermittent Renewable Energy Sources (RES), improving air quality in urban centres, and reducing greenhouse gas emissions from the transport sector and their dependence on fossil energy sources. With the increasing number of Electric Vehicles (EVs) available from automotive manufacturers, one key question that arises is the capability of the electrical grid to feed the increasing energy demand of the EV fleet without major investments. This paper shows that a progressive penetration of EVs, even at a rapid rate, is perfectly possible for vehicles that offer autonomy, energy consumption and charging characteristics that are currently available in the market. This analysis is based on data acquired during a year, using a Plug-in Hybrid Electric Vehicle (PEV) as the only vehicle for a typical, Southern European Portuguese family. The energy consumption of a gasoline and electric vehicle is presented, as well as its impact on the household load pattern. An analysis of the impact on the grid is also presented, considering several penetration rates (100 thousand, 500 thousand and 1 million vehicles). As well as the avoided use of fossil fuel per vehicle and consequent reduction in overall emissions when compared with a conventional vehicle.  相似文献   

12.
The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today’s gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450 ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low-cost PHEV is available we find that its adoption has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.  相似文献   

13.
The study develops scenarios regarding the introduction of electric vehicles to the passenger vehicle fleet of Norway to reach the 2020 Norwegian greenhouse gas reduction target and a more extreme target to limit global temperature increase to two degrees. A process-based life cycle assessment approach is integrated with a temporally variable inventory model to evaluate the environmental impacts of these scenarios. We find that greenhouse gases in the reference scenario increase by 10% in 2020 in comparison to 2012; while for the more intensive improvements in conventional vehicles, this increase is reduced to 2%. For electric vehicles deployment scenarios, although the fleet share will reduce the tailpipe greenhouse gas emissions by 8–26%, with the upper end representing the two-degree reduction target, emissions reductions over the entire life cycle are only 3–15%. Electric vehicles also reduce emissions of NOx, SO2 and particulates reducing acidification, smog formation and particulate formation impacts, however, with addition of large numbers of electric vehicles significant trade-offs in toxicity impacts are found.  相似文献   

14.
In previous works, we have shown two-car households to be better suited than one-car households for leveraging the potential benefits of the battery electric vehicle (BEV), both when the BEV simply replaces the second car and when it is used optimally in combination with a conventional car to overcome the BEV’s range limitation and increase its utilization. Based on a set of GPS-measured car movement data from 64 two-car households in Sweden, we here assess the potential electric driving of a plug-in hybrid electric vehicle (PHEV) in a two-car household and compare the resulting economic viability and potential fuel substitution to that of a BEV.Using estimates of near-term mass production costs, our results suggest that, for Swedish two-car households, the PHEV in general should have a higher total cost of ownership than the BEV, provided the use of the BEV is optimized. However, the PHEV will increasingly be favored if, for example, drivers cannot or do not want to optimize usage. In addition, the PHEV and the BEV are not perfect substitutes. The PHEV may be favored if drivers require that the vehicle be able to satisfy all driving needs (i.e., if drivers don’t accept the range and charge-time restrictions of the BEV) or if drivers requires an even larger battery in the BEV to counter range anxiety.We find that, given a particular usage strategy, the electric drive fraction (EDF) of the vehicle fleet is less dependent on whether PHEVs or BEVs are used to replace one of the conventional cars in two-car households. Instead, the EDF depends more on the usage strategy, i.e., on whether the PHEV/BEV is used to replace the conventional car with the higher annual mileage (“the first car”), the less used car (“the second car”), or is used flexibly to substitute for either in order to optimize use. For example, from a fuel replacement perspective it is often better to replace the first car with a PHEV than to replace the second with a BEV.  相似文献   

15.
With vehicle miles of travel increasing at a faster pace than population, one strategy being actively pursued by both state and local governments is compact development. California recently passed legislation that aggressively promotes sustainability by endorsing and rewarding compact development. Likewise, the California Air Resources Board has set a statewide reduction target of 5MMT of greenhouse gas reductions from land use, based largely on achieving compact development patterns. In this paper, we use a multivariate two-part model with instrumental variables, which corrects for residential location self-selection bias. We use a much larger and more geographically representative travel survey on household travel patterns and socio-economic characteristics than represented in previous California studies; this allows us to robustly consider other influences on travel. Our results indicate that, all else equal, a 10% in residential density would reduce VMT by 1.9%. This elasticity is larger than the reported in previous econometric studies for the US, and specifically for California. However, as we show, the magnitude of this impact is still low considering reasonable ranges for policies aimed to increase residential density.  相似文献   

16.
Growing concerns over climate change have led to an increasing interest in the role of the built environment to reduce transportation greenhouse gas (GHG) emissions. Many studies have reported that compact, mixed-use, and well-connected developments reduce vehicle miles traveled (VMT). Others, however, argue that densification and mixture of land uses can slow down vehicle movements, and consequently generate more driving emissions. Methodologically, VMT is only a proxy, not an exact measure of emissions. This study quantifies the net effects of the built environment on household vehicle emissions through a case study of Austin, TX. The study employed structural equation modeling (SEM) techniques and estimated path models to improve understanding of the relationship between the built environment and vehicle emissions. The results show a rather complex picture of the relationship. Densification can reduce regional vehicle emissions despite its secondary effect of reduced vehicle travel speed. A 1% increase in density was found to reduce household vehicle emissions by 0.1%. However, intensification of the design feature of the built environment in developed areas may work in the opposite direction; the modeling results showed a 1% increase in grid-like network being associated with 0.8% increase in household vehicle emissions. Based on the results, the study addressed the potential of and the challenges to reducing vehicle emissions through modifying the built environment in local areas.  相似文献   

17.
Reducing roadside emissions is a common challenge in metropolitan cities. In Hong Kong, conventional liquefied petroleum gas taxis are one of the main contributors to roadside emissions as they operate on the streets 24 h a day with a long daily driving mileage. Moreover, these taxis suffer from a severely poor service reputation. To enhance the environmental friendliness and service quality of the taxi industry, this study explores the market potential of operating premium electric taxis in the dispatching mode. A stated preference survey was conducted to 1410 taxi customers about their taxi-riding choices between premium electric taxis and conventional liquefied petroleum gas taxis. In total, 5640 observations were obtained and used to develop a series of binary logistic regression models with different model formulations for the determination of the significant factors influencing customers’ selections. The findings indicate that walk time to and wait time for taxis were the most critical concerns to the customers, and they were more willing to take premium taxis if their journey distance was longer and their desired improvement on taxi service quality was greater. The socio-demographic status of taxi customers also influences their choices. The associated policy implications are discussed for promoting taxis with better service quality and fewer roadside emissions. The findings provide some policy insights to other international cities that have a similar taxi market to Hong Kong.  相似文献   

18.
The role alternative car technologies may play in effectively tackling the problem of climate change is still highly uncertain. This paper aims at investigating possible impacts of car powertrain technologies on future energy demand and its corresponding greenhouse gas emissions until 2030. A system dynamics model covering nine car technologies in China, France, Germany, India, Japan and the United States was applied, with a focus on electric cars. Four main scenarios are constructed and sensitivity analysis undertaken. Greenhouse gas emissions from cars in the six countries are simulated to reach up to 2.6 gigatonnes in 2030 (a 13–32% increase between 2020 and 2030, depending on the scenario). The main conclusion from model-based policy analysis is that electric cars may have a positive contribution to emissions mitigation in the passenger road transport system. However, greenhouse gas emissions from cars arising from the combined effect of car manufacturing and scrappage and electricity generation processes are expected to grow more dramatically. As a result, actions that support both low-emission (re-)manufacturing and clean electricity generation are needed. These results complement accurate but static life cycle assessments and open the discussion for dynamic model assumptions.  相似文献   

19.
There have been ongoing debates over whether battery electric vehicles contribute to reducing greenhouse gas emissions in China’s context, and if yes, whether the greenhouse gas emissions reduction compensates the cost increment. This study informs such debate by examining the life-cycle cost and greenhouse gas emissions of conventional vehicles, hybrid electric vehicles and battery electric vehicles, and comparing their cost-effectiveness for reducing greenhouse gas emissions. The results indicate that under a wide range of vehicle and driving configurations (range capacity, vehicle use intensity, etc.), battery electric vehicles contribute to reducing greenhouse gas emissions compared with conventional vehicles, although their current cost-effectiveness is not comparable with hybrid electric vehicles. Driven by grid mix optimization, power generation efficiency improvement, and battery cost reduction, the cost-effectiveness of battery electric vehicles is expected to improve significantly over the coming decade and surpass hybrid electric vehicles. However, considerable uncertainty exists due to the potential impacts from factors such as gasoline price. Based on the analysis, it is recommended that the deployment of battery electric vehicles should be prioritized in intensively-used fleets such as taxis to realize high cost-effectiveness. Technology improvements both in terms of power generation and vehicle electrification are essential in improving the cost-effectiveness of battery electric vehicles.  相似文献   

20.
This life cycle assessment case study puts the supply chain contribution of transportation to greenhouse gas emissions in context with other contributors using American wheat grain as a representative product. Multiple locations, species and routes to market are investigated. Transportation contributes 39–56% of the supply chain emissions, whereas there is a 101% intra-species and 62% inter-species variation in greenhouse gas emissions from production, demonstrating that transportation is both of smaller magnitude, and less sensitive than other factors, in particular, field sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号